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Abstract In recent years the growing popularity of Convolutional Neural Net-
works (CNNs) has driven the development of specialized hardware, so called
Deep Learning Accelerators (DLAs). The large market for DLAs and the huge
amount of papers published on DLA design show that there is currently no
one-size-fits-all solution. Depending on the given optimization goals such as
power consumption or performance, there may be several optimal solutions for
each scenario. A commonly used method for finding these solutions as early as
possible in the design cycle, is the employment of analytical models which try
to describe a design by simple yet insightful and sufficiently accurate formu-
las. The main contribution of this work is the generic Analytical Model for AI
accelerators (AMAIX) for the estimation of CNN execution time on DLAs. It
is based on the popular Roofline model. To show the validity of our approach,
AMAIX was applied to the Nvidia Deep Learning Accelerator (NVDLA) as
a case study using the AlexNet and LeNet CNNs as workloads. The result-
ing performance predictions were verified against an RTL emulation of the
NVDLA using a Synopsys ZeBu Server-based hybrid prototype. By refining
the model following a divide-and-conquer paradigm, AMAIX predicted the
inference time of AlexNet and LeNet on the NVDLA with an accuracy 98%.
Furthermore, this work shows how to use the obtained results for root-cause
analysis and as a starting point for design space exploration.
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2 Niko Zurstraßen et al.

1 Introduction

CNNs have become part of our everyday life in the last years. They can be
found in many different applications such as smartphones, data centers, and
autonomous driving systems [4,13,15]. These different applications have vary-
ing requirements regarding their Key Performance Indicators (KPIs) such as
performance, area, power consumption, or accuracy. Executing CNNs on gen-
eral purpose CPUs does often not fulfill these requirements. Therefore, spe-
cialized integrated circuits, called Deep Learning Accelerators (DLAs), are
developed to mitigate this issue. Designing a DLA is not a trivial task, since
a DLA usually consists of different acceleration units for different CNN lay-
ers. Each of these units has configuration parameters, leaving the designer
with a large design space to explore. For example, the number of Multiply-
Accumulate (MAC) units in an accelerator directly influences area, cost, power
consumption, and performance. As this work shows, the optimal configuration
of a DLA regarding performance strongly depends on the prospective work-
load, which should therefore also be considered from the very beginning. All
these considerations should be included as early as possible in the development
process. Although parameters can be altered in later stages as well, small mod-
ifications usually entail a series of further changes, especially if the design is
already in a more advanced development stage. The more advanced the design
is, the higher the costs for the alterations will be.

Common methods to perform early estimates are high-level architecture
simulations, also called pre-RTL simulations, and analytical models. Both
methods have been applied in DLA design [3,5,6,14,12]. However, most ap-
proaches focus strongly on the hardware structure to be developed and merely
regard the model as a byproduct. These models are usually very specific and
therefore cannot be generalized for designing new DLAs. A more generic ap-
proach is the Eyexam framework proposed in [5]. It shows how a performance
evaluation for an arbitrary DLA can be created within seven refinement steps.
However, the authors only provide a general overview of how these steps have
to be applied and do not mention any formulas or further instructions.

In contrast, this paper presents a novel generic analytical model to esti-
mate the inference performance of an arbitrary DLA. It is based on the popu-
lar Roofline model since the assumptions of data/processing parallelism and a
small control flow overhead hold valid for most DLA designs [16]. The model
still requires characterization regarding the DLA’s hardware architecture, but
provides a structured and systematic approach to attain it. Other KPIs such
as power or area are left for future work. As a case study the model is ap-
plied to the Nvidia Deep Learning Accelerator (NVDLA), which was chosen
because its open-source RTL implementation and compiler permit to verify
the model in great detail. Hence, the estimated inference performance is com-
pared to the results obtained by executing the unmodified NVDLA RTL code
in a hybrid prototype using Synopsys ZeBu Server. In addition the estimates
are compared to the official Nvidia NVDLA performance sheet [2]. Note, this
work is an extended version of the original paper [8] published at ”SAMOS In-
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AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 3

ternational Conference on Embedded Computer Systems: Architectures”. The
major contributions of the original work are as follows:

• The broadly-applicable AMAIX model for inference performance estima-
tion of DLAs

• Detailed case study on how to apply AMAIX using the NVDLA
• Evaluation of AMAIX’s accuracy using hybrid emulation
• Assessment of AMAIX for NVDLA design space exploration

We extend the original work by discussing the analytical model in greater
detail and by proposing a divide-and-conquer paradigm to increase the model’s
accuracy.

2 The AMAIX Approach

This section deals with the main contribution of this work: AMAIX, a generic
analytical model for predicting DLA inference time.
The fundament of AMAIX is the popular Roofline model [16] by Williams
et al. Originally designed for the performance evaluation of multicore archi-
tectures, we extend the model to DLAs and show its validity. The key idea
behind the Roofline model is that the achievable performance of a workload
on a compute system is either limited by the available memory bandwidth
or by the theoretical maximum compute power. To determine the limiting re-
source, one has to calculate the so-called operational intensity for a given task.
The operational intensity is the ratio of number of operations divided by the
number of bytes exchanged with the main memory for a given workload. By
inserting the operational intensity into a roofline graph, as depicted in Fig. 1,
the achievable performance can quickly be obtained by only visual means.
An assumption of the Roofline model is that the operational intensity is con-
stant during the execution of a workload, and that the memory and processing
resources used do not change. This is depicted in Fig. 1a), where the memory-
bound cnn0 task is modeled. If one of these conditions is not fulfilled, a task
can be divided into further subtasks, which are mapped to different resources
and can have different operational intensities. This is depicted in Fig. 1b). Here
the main workload cnn0 was split into the different tasks layer0, layer1, and
layer2. layer0 is memory bound by the peak bandwidth ceiling memory1,
layer1 is compute bound by peak performance ceiling proc1, and layer2 is
bound by proc0.

Representing an entire CNN as a single task, as for example in [13], was
shown to be too simplistic and imprecise [7]. Usually the first convolutional
layers of a CNN require only a few weights but many MAC operations, thus
yielding a very high operational intensity. For the last, usually fully-connected
layers, however, it is vice versa. These layers require many weights for only a
few MAC operations. This was also confirmed by the experiments conducted
in our case study. For example, the first convolutional layers of LeNet running
on the NVDLA exhibit an operational intensity of 100 and more, while the
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4 Niko Zurstraßen et al.

Fig. 1 a) The whole CNN is represented by one task which is mapped to one memory
and one processing unit. b) The CNN is described on a layer level. Different layers expose
different operational intensities and can be mapped to different memories and processing
units.

fully-connected layers are in the range of 1 to 2. Therefore, the individual
layers that form a CNN must be modeled as individual tasks. In addition,
these tasks are usually mapped to different processing units on the DLA. For
example on the NVDLA, convolutional layers are executed on the CONV_CORE
processing unit, while pooling layers are executed on the PDP processing unit.

In AMAIX we propose that the amount of memory transfers, the number
of arithmetic operations and the hardware resources used must be determined
per CNN layer. For this, a mathematical description of CNN layer is introduced
as follows:

l = (i, k, o, map, scaleifmap, scaleweight, scaleofmap, scaleops)

i = (iw, ih, ic), k = (kw, kh, kc, kn), o = (ow, oh, oc)

map ∈ {(proc0,mem0), (proc1,mem1), (proc2,mem1), ...}
scaleifmap : map× i× k × o → IR

scaleofmap : map× i× k × o → IR

scaleweight : map× i× k × o → IR

scaleops : map× i× k × o → IR

Here, i represents the dimensions (width, height, channels) of the input feature
map (ifmap), o the dimensions of the output feature map (ofmap) and k the
dimensions and number of kernels which are required for a layer’s execution.
Applying this formalization to LeNet’s first layer would result in the following
sets:

i = (28, 28, 1), k = (5, 5, 1, 20), o = (24, 24, 20)

Fig. 2 provides an illustration of these parameters. The map parameter spec-
ifies on which hardware resources a layer is executed. The scaling factors are
functions which map a layer’s parameters to a real number to incorporate
the microarchitectural design of the DLA. They indicate how much the ex-
amined data transfers or arithmetic operations deviate from a general model.
Since determining the scaling factors correctly is paramount for achieving high
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AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 5

modeling accuracy, a more detailed explanation is given in the following sub-
sections.

Fig. 2 Visual representation of ifmap, kernel and ofmap parameters.

2.1 Determining Data Transfers

The amount of all data transfers (dtotal) for a CNN’s layer is the sum of ifmap
data (difmap), weight data (dweight), and ofmap data (dofmap):

dtotal = difmap + dweight + dofmap

difmap = scaleifmap · iw · ih · ic
dweight = scaleweight · kw · kh · kc · kn
dofmap = scaleofmap · ow · oh · oc

If scaleifmap = scaleweight = scaleofmap = 1 is used, the general model is
assumed. For example, according to this model the ifmap data is just the
number of ifmap elements at one byte per element. This is the volume of the
ifmap cuboid shown in Fig. 2. The general model is a good starting point for
initial estimates and can be used when there is little information available
about the actual hardware.

In practice, there are a number of effects depending on the DLA microar-
chitecture and executed algorithms causing a scaling smaller or larger than 1.
The following list gives an overview of influences on the data scaling factors:

– Data reload: On many systems, the size of the on-chip memory is not
sufficient to buffer the entire ifmap, kernel and ofmap. This means that
the same data has to be fetched/written multiple times from/to the main
memory causing an increased scaling factor.

– Data type: Frequently used data types are, for example, int8 (1B) or
fp16 (2B). This must be considered accordingly.

– Dark bandwidth: When transferring data via a bus system, the size of
the data must be a multiple of the bus width. If this is not the case, dark
bandwidth occurs, which results in a larger scaling factor.
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6 Niko Zurstraßen et al.

– Zero-padding: The internal word width of a DLA can cause the data to
be padded with zeros increasing the scaling factor.

– Transformation: This applies in particular to convolution operations,
which can not only be implemented by the standard algorithm. Fourier
transform, Winograd convolution, or Toeplitz matrices, can influence the
scaling factors.

– Layer fusion: Since the output of one layer is usually the input of another,
data can be kept locally, which allows a data scaling factor of 0.

– Data compression: Data can be compressed resulting in a smaller scaling
factor.

2.2 Determining the Number of Operations

Similar to determining data transfers, a formula for the number of arithmetic
operations for a CNN’s layer is derived:

nops = scaleops · ow · oh · oc · kw · kh · kc
For scaleops = 1 this formula refers to the number of MAC operations needed
for a standard convolution and is also a good first order estimate if no knowl-
edge about the hardware is available. Implementation details of hardware and
algorithms can increase or decrease the number of operations scaling factor
scaleops. Two effects play a particularly important role:
– Transformation: Alternative convolution algorithm implementations like

Fourier transform or Winograd convolution usually decrease the amount
of needed operations.

– Hardware utilization: Many DLA designs have fixed processing engine
sizes resulting only in a 100% utilization if the data’s dimensions comply
with these sizes. Chen et. al. distinguish between the two cases of spa-
tial mapping fragmentation and temporal mapping fragmentation leading
to underutilized hardware [5]. Since both play an important role in most
DLAs, the NVDLA case study section provides an in-depth explanation on
how to quantify this effect.

After determining all the scaling factors, a detailed Roofline model can be
created. This is covered in the next subsection.

2.3 Applying the Roofline Model

In this subsection the previously presented assumptions and formulas are
joined together. As a first step, the Roofline model must be reformulated for
each layer l of the CNN L as follows:

performance(l) = min( performancepeak(l), opintensity(l) ·memorypeak(l) )

opintensity(l) =
nops(l)

dtotal(l)
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AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 7

The inference time of a CNN is the sum over all layer time spans tlayer:

tlayer(l) = nops(l)/performance(l)

ttotal(L) =
∑
l∈L

tlayer(l)

Another aspect to be considered is the pipelining of layer operators. Many
DLAs like the NVDLA are systolic architectures on layer-level. If one or more
layers are pipelined, they must be considered as a whole. The following for-
mulas then apply for a pipeline of layers pipe = {ln, ..., ln+m}:

tlayer(pipe) = max

(
nops(ln)

performance(ln)
, ...,

nops(ln+m)

performance(ln+m)

)
opintensity(ldom) =

nops(ldom)∑
k∈pipe dtotal(k)

Note, that this model assumes that the overhead for filling and draining a
pipeline can be omitted. It can be observed that the slowest unit in a pipeline
determines the overall execution time and therefore the performance. A layer
ldom which determines a pipeline’s executions time is called dominating. With
all the formulas and descriptions listed above the model is now ready to be
applied to an example.

3 Case Study: Nvidia Deep Learning Accelerator

In this section AMAIX, as presented in the preceding section, is applied to the
NVDLA. The key challenge here is to determine the different scaling factors.
This is done for bias and convolutional layers as examples in the following. For
other layers only the results are presented since a detailed description would
go beyond the scope of this work. With these scaling factors the inference time
of the NVDLA is estimated for the widely-used AlexNet and LeNet CNNs [10,
11]. These times are then compared with the results of an NVDLA Verilog
emulation running in a hybrid prototype based on Synopsys ZeBu Server and
Virtualizer. Finally, it is shown how AMAIX can be refined and used to explore
the NVDLA’s design space.

3.1 Nvidia Deep Learning Accelerator

The NVDLA is an open-source DLA specialised in CNN inference [2]. The
project, which exists since 2017, features an open-source SystemC model, a
Verilog implementation as well as a corresponding Kernel Mode Driver (KMD)
and User Mode Driver (UMD). Executables for the NVDLA can be generated
by using the NVDLA compiler. The NVDLA has over 30 configurable hard-
ware parameters. One predefined configuration is the so called NVDLA full



P
R

E
P

R
IN

T
-

pu
bl

is
he

d
in

IJ
P

P
20

22
,d

oi
:1

0.
10

07
/s

10
76

6-
02

2-
00

72
8-

3

8 Niko Zurstraßen et al.

Fig. 3 Overview of the NVDLA full configuration.

configuration, which is used in this work since it contains all subprocessors
and extensions. Fig. 3 shows an overview of the NVDLA full configuration.

It can be observed, that the NVDLA is composed of several specialized
subprocessors for convolution (CONV_CORE), activation functions (SDP), pooling
(PDP), normalization functions (CDP), and memory-to-memory transformations
(RUBIK). Also it includes on-chip SRAM and a 512bit wide AXI bus interface.
Data is fetched and written by dedicated DMAs for each subprocessor.

3.2 Hybrid Emulation Setup

To verify the results obtained from AMAIX, a hybrid prototype based on
Synopsys ZeBu Server and Virtualizer was used for comparison. Here, the
NVDLA RTL is synthesized for the ZeBu server and then emulated on it,
meaning that precise behavioral analysis can be undertaken. In our hybrid
emulation setup additional components such as an ARM Cortex A57 CPU
cluster and DRAM are added to form an entire embedded system. Since these
components only need to be modeled functionally they are part of a Virtualizer
SystemC TLM2.0 Virtual Platform (VP) that is executed on a host computer.
This is depicted in Fig. 4. VP and RTL emulation are connected via so-called
transactors. Physically a PCIe bus is used for this purpose.

Inside the VP a Linux operating system with the NVDLA drivers is ex-
ecuted on the ARM cluster. To reduce the system’s overhead, the simulated
ARM cores were clocked at 4GHz while the NVDLA was clocked at 1GHz.
The DRAM provided in the VP is purely functional and provides no timing an-
notation. Thus the NVDLA’s bandwidth is limited only by its clock speed and
bus width, which corresponds to 64GB/s for the NVDLA full configuration at
1GHz. This approximation was shown to be valid using a Synopsys Platform
Architect Ultra pre-RTL simulation [9]. Using this simulation the DRAM ac-
cess patterns of the NVDLA were analyzed. It was observed, that nearly 100%
of the DRAM bandwidth can be utilized for weight fetching, which dominates
the overall data traffic (> 90%). This is due to the linear access pattern of
the CDMA_WT, which is responsible for fetching the weights. The other DMAs
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AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 9

showed only partially linear patterns, which also reached over 95% depending
on the DRAM and bus configuration in our simulations.

Using the mentioned hybrid emulation setup the execution time for most
commonly-used networks like AlexNet or ResNet-18 on the emulated NVDLA
is in the range of a few minutes. This allows us to analyze different scenarios
quickly.

ZeBu ServerHost CPU

Virtual Prototype

ARM Cortex A57 DRAM

Fig. 4 Hybrid emulation setup.

3.3 Applying AMAIX

As a first example the scaling factors of a convolutional layer shall be de-
rived. These layers are executed on the NVDLA’s CONV_CORE which provides
a maximum compute power of:

performancepeak = Tk · Tc · clock

With Tk being the width of the NVDLA’s MAC unit (which is part of the
CONV_CORE) and Tc being the depth of the MAC unit. The MAC unit im-
plements a typical weight-stationary architecture which can also be found in
other DLAs. For the NVDLA full configuration with a data type b of fp16, the
parameters resolve to Tk = 16 and Tc = 64.

As a next step the operations scaling factor is derived as:

scaleops =

⌈
ic
Tc

⌉
·
⌈
kn
Tk

⌉
· Tk · Tc

ic · kn

The formula incorporates the previously mentioned cases of spatial mapping
fragmentation and temporal mapping fragmentation. A spatial mapping frag-
mentation occurs in case of the NVDLA if ic < Tc and kn < Tk apply. Tem-
poral mapping fragmentation is similar, but refers to ic and kn not being
multiples of Tc and Tk. This means that spatial mapping fragmentation never
achieves a 100% hardware utilization while temporal mapping fragmentation
achieves a 100% hardware utilization only in some cycles of the execution (see
Fig. 5).

To model a lower hardware utilization one can either adjust the computa-
tional roof for a given layer or add dark operations. These are operations that
are executed but do not contribute to the actual result. In this work the latter
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10 Niko Zurstraßen et al.

Spatial mapping fragmentation Temporal mapping fragmentation

Fig. 5 Depicting temporal and spatial mapping fragmentation. The overall hardware uti-
lization is 0.25 in the first case and 0.75 in the second case. For the spatial mapping frag-
mentation example each cycle executes 1024 MAC operations. However, only 256 operations
contribute to the layer’s result. The other 768 operations are dark operations.

approach is used since it combines well with the scaling factor approach and
avoids an individual compute roof for each layer.

The next scaling factors discussed are scaleifmap and scaleofmap.
The former can be described as follows for the NVDLA full configuration,
where atomAXI/atomNVDLA = 2, i.e. the AXI bus width is twice the size of
the internal NVDLA word width:

scaleifmap = pad(ic, bi) ·
bi
ic

+
ddarkBW (iw, ih, ic, bi)

ic · iw · ih

pad(c, b) =

⌈
c · b

atomNVDLA

⌉
· b−1 · atomNVDLA

ddarkBW (w, h, c, b) = (wmod 2) · h · pad(c, b) · b

Here four influences on the scaling factor explained in Subsection 2.1 occur.
The first one is scaling due to multi-byte data types. The NVDLA uses fp16
as default which results in bi = 2 and linearly scales the amount of data
fetched.

Secondly, zero-padding occurs. The NVDLA has to work with so-called
atoms because of its internal word width. In the case of the NVDLA full
configuration, an atom must consist of 32B in the channel direction. This
is represented by the parameter atomNVDLA. If this is not the case, zero-
padding must be applied. For example, for fp16 data types the channels are
always padded to be a multiple of 16. So, ic = 7 is padded to 16 channels,
ic = 17 to 32 channels and so on.

The third influence on the scaling factor is dark bandwidth. Since the
atomNVDLA is 32B while the atom of the bus is 64B (atomAXI) requesting
an odd number of atoms will lead to dark bandwidth. Because the NVDLA
reads data row-wise, an odd row size will lead to dark bandwidth. So, for every
row there are 32B of dark bandwidth.

Lastly, data reload occurs. In the previous formulas it was assumed that
ifmap and kernel fit into the 512KiB convolution buffer of the NVDLA full
configuration. However, if this is not the case, the ifmap will be broken into
multiple tiles similar to the algorithm proposed by Zhang et. al. [6]. These
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AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 11

tiles have overlapping areas which result in overall increase of ifmap data.
Since the NVDLA treats the individual tiles as separate layers, this should
also be done in the analytical model. Otherwise, the scaling factor will quickly
become complex.

The last scaling factor to be discussed for convolutional layers is the weight
scaling factor scaleweight. Basically, the total number of weights is equal to
the sum of the volumes of the kernel cuboids multiplied with the data type
and zero-padded to be aligned with the convolutional buffer’s width cbufwidth.
This results in the following scaling factor:

scaleweight =

⌈
bk · kw · kh · ic · kn

cbufwidth

⌉
· cbufwidth

kw · kh · ic · kn
Since the amount of weights is often much greater than cbufwidth which is
128B for the NVDLA full configuration, a scaling factor of of scaleweight ≈ 2
is observed for most fp16 cases. The scaling factor for the ofmap is assumed to
be 0, since convolutional layers are usually pipelined with a bias layer which
will be considered in the following:

scaleofmap = 0

The next layer to be considered is the bias layer. It always succeeds a convo-
lutional layer and is executed in a pipelined fashion on the NVDLA’s SDP.
Since it has a fixed throughput of throughputX ifmap elements per cycle, it is
straightforward to determine the operational roof and operation scaling factor
as follows:

comproof = throughputX · clock

scaleops =

⌈
iw · ih · pad(ic, bi)
throughputX

⌉
· throughputX
ow · oh · oc · kw · kh · kc

Since a bias layer is always pipelined after a convolutional or an IP layer, there
is no ifmap data to fetch, so:

scaleifmap = 0

The ofmap follows the same principles as before:

scaleofmap = pad(oc, bo) ·
bo
oc

+
ddarkBW (ow, oh, oc, bo)

oc · ow · oh
As the formula shows, the case ow = oh = 1 is particularly problematic,
because here about 50% of the data traffic would consist of dark bandwidth.
This is the case after every fully connected layer. Therefore, the NVDLA can
be operated in a compact mode in which data is read channel-wise rather than
row-wise. This reduces the dark bandwidth to a minimum, resulting in the
following formula:

ddarkBW (w, h, c, b) = atomNVDLA ·
(⌈

c · b
atomNVDLA

⌉
mod 2

)
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12 Niko Zurstraßen et al.

The bias data is transmitted sequentially, therefore the scaling for the weights
depends only on the dark bandwidth related to the data type:

scaleweight =

⌈
kn · bk

atomAXI

⌉
· atomAXI

Since one bias value is needed per output channel, kw = kh = kc = 1 and
kn = oc applies. In addition, a bias has no influence on the dimensions, so
iw = ow, ih = oh and ic = oc always apply.

Besides bias and convolutional layers there are a number of other layer
types for which this methodology was applied. However, these are much less
performance-critical and will not be discussed in detail as this would go beyond
the scope of this paper.

3.4 Tiling

As already mentioned in Subsection 2.1 the local memory capacity of many
DLAs is not sufficient to store ifmap, ofmap, and weight data locally. For
example, using the NVDLA’s data format, the first layer of AlexNet already
comprises more than 1MiB of ifmap data exceeding the convoluational buffer’s
capacity of 512KiB. Since data is usually used more than once for calculations,
especially for convolutions, an optimal reuse strategy is crucial for fast and effi-
cient operation of a DLA. Typical reuse strategies are the fused layer approach
of Alwani et al. [3] or the tiling algorithm from Zhang et al. [6].

In the following, the reuse strategy of the NVLDA is examined in more
detail. By analyzing the NVDLA’s compiler we found out that a convolution
can be executed in 6 different modes depending on the size of the data:

1. Full ifmap and full weight (no split needed)
2. Full ifmap and kernel groups as ping-pong
3. Full ifmap and one kernel group
4. Partial ifmap (h-tiled) and full weights
5. Partial ifmap (h-tiled) and kernel groups as ping-pong
6. Partial ifmap (h-tiled) and one kernel group

The first 2 modes represent a standard convolution where most of the data
can be kept locally and thus no performance penalty is to be expected. In
Mode 3 the convolution buffer can hold the whole ifmap but only one kernel
group (16 kernel data cubes). This mode might come with a huge performance
penalty as a parallel execution of fetching weights and executing the convo-
lution is not guaranteed anymore. Modes 4, 5, 6 apply a reuse strategy that
can be summarized as a simplified version of the tiling algorithm by Zhang et
al. [6]. In these modes the ifmap is horizontally subdivided into multiple tiles
as depicted in Fig. 6. This drastically reduces the amount of ifmap data that
has to be kept locally. One drawback, however, is that parts of the ifmap have
to be loaded several times, which is represented by the dark orange parts in
Fig. 6. As the number of tiles increases, so does the relative amount of data



P
R

E
P

R
IN

T
-

pu
bl

is
he

d
in

IJ
P

P
20

22
,d

oi
:1

0.
10

07
/s

10
76

6-
02

2-
00

72
8-

3

AMAIX in-depth: A Generic Analytical Model for Deep Learning Accelerators 13

Fig. 6 The NVDLA tiling algorithm applied on AlexNet’s first layer. Instead of one ifmap
with 227 pixels in height direction, 5 tiles with 58 and 35 pixels respectively are convoluted.

loaded multiple times, therefore an optimal compiler should always minimise
the number of tiles. Note, that this optimization problem is quite simple as
the NVDLA compiler only supports horizontal tiling. According to the source
code a vertical tiling and a tiling in channel direction will be introduced in the
future.

To model the aspect of data overhead caused by tiling one can either adjust
the corresponding scaling factors, or regard each tile as a single layer. Our
model uses the latter approach. This way scaling factors are kept simple and
a possible tiling directly becomes apparent from the results. Whether a layer
needs tiling and what sizes these layer are was determined by a compiler
mockup we derived from the original NVDLA compiler.

3.5 Results

In this subsection AMAIX parameterized for the NVDLA, as shown in the pre-
vious subsection, is used to predict inference performance for the AlexNet and
LeNet CNNs. The results are compared to the inference performance measured
on the hybrid prototype introduced in Subsection 3.2. The non-cycle accurate
SystemC-TLM model was used for measuring the exchanged data amounts
with the main memory while the cycle accurate Verilog model was used to
measure the time a layer needs for its execution. In addition, the NVDLA
performance estimator spreadsheet provided by Nvidia was used for compari-
son [2]. The standard KMD, UMD and NVDLA compiler in basic mode were
used to execute the following measurements. All KMD debug output was re-
moved for the RTL measurements, as it turned out to reduce performance
significantly.

As a first example the results of LeNet shall be analyzed which are depicted
in Table 1. A corresponding roofline graph can be found in Fig. 7. The follow-
ing parameters are shown in the table: execution time of a layer according to
AMAIX (tlayer,am), the hybrid prototype (tlayer,hy) and the NVDLA perfor-
mance sheet (tlayer,ps). Furthermore, the boundary (either memory or com-
pute bound), data exchanged with main memory (dweight, difmap, dofmap) and
number of operations (nops) are also displayed. The amount of data refers to
both simulation and analytical model, since the model predicted this 100% ac-
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Table 1 Results of LeNet. In all cases the bias is dominated by the corresponding convolu-
tional/fully connected layer. For a calculation example see Appendix 6.1.

Layer tlayer,am tlayer,hy tlayer,ps bound dweight difmap dofmap nops

Unit µs µs µs {c,m} B B B operations
conv1 28.8 28.9 7.2 c 1,024 25,088 0 29,491,200
(bias) 0 0 0 - 64 0 36,864 18,432
pool1 4.61 4.61 0 c 0 36,864 9,216 18,432
conv2 6.40 6.93 3.2 c 50,048 9,216 0 6,553,600
(bias) 0 0 0 - 128 0 8,192 4,096
pool2 1.02 1.06 0 c 0 8,192 2,048 4,096
fc3 12.5 12.97 15.67 m 800,000 2,048 0 8,388,608
(bias) 0 0 0 - 1,024 0 1,024 512
relu3 0.03 0.08 0 c/m 0 1,024 1,024 128
fc4 0.18 0.37 0.17 m 10,112 1,024 0 131,072
(bias) 0 0 0 - 64 0 64 32
softmax 0 0 0 - 0 0 0 0
idle 0 20.52 0 - 0 0 0 0
Total 53.9 54.92+20.52 26.2 - 862,464 83,712 58,432 44,610,208

curately. The number of operations refers only to the analytical model. Layers
which are pipelined and not dominant are enclosed in brackets. The execution
time of a layer is defined as the time between setting the kick-off register and
raising the interrupt flag. The results show that for the total inference time the
analytical model predicts the measured inference time of 54.9µs with 53.9µs
or 98% accuracy. The model deviates from the measurements in some layers,
especially in small layers. Several reasons for this were discovered during anal-
ysis. Firstly, the individual subprocessors such as the SDP also have internal
pipelines which need a certain number of cycles to be filled. Furthermore, a
certain amount of data must be available before the execution of operations
can be started with. How these effects be can included in the Roofline model
to improve the accuracy is shown in the next subsection.

operational intensity [operations/byte]

SDP

CONV_CORE

PDP

64 GB/s

p
er

fo
rm

an
ce

 [
G

op
/s

]

Fig. 7 Applying a roofline graph on the obtained results of LeNet.
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The time obtained from the NVDLA performance sheet overestimated the
performance of the NVDLA by more than 2x. This is due to the performance
sheet assuming optimizations like layer pipelining or Winograd convolution
which were not implemented in the NVDLA compiler at the time the perfor-
mance sheet was released. Due to the lack of configurability, the result given
by the performance sheet could not be improved further. Some aspects like
ifmap tiling or bias layers are completely omitted, which further deteriorates
its accuracy.

Fig. 8 shows an activity trace of LeNet on the hybrid prototype. The ”idle”
parts represents phases in which the NVDLA waits for further instructions
from the driver. These times have already been greatly reduced by the pre-
viously mentioned modifications of the KMD, but are still significant. One
reason for this is that LeNet is a very small example for today’s standards. As
the results show, the NVDLA can process most layers within a few hundred
cycles or less. This leads to the hardware being faster than the driver.

start endMeasured (System): 75.4µs

NVDLA 
host

ReLU pooling idleconvolution

LeNet fp16 @1GHz, 64GB/s

Measured (NVDLA): 54.9µs

Fig. 8 Activity trace of LeNet running as a Hybrid Emulation.

start endMeasured: 6.124ms

ReLU pooling idleconvolution LRN

AlexNet fp16 @1GHz, 64GB/s

Fig. 9 Activity trace of AlexNet running as a Hybrid Emulation.

Therefore, the more recent AlexNet is analyzed in the following. As can
be seen in Fig. 9, AlexNet’s execution time of 6.124ms is about 100 times
longer than the execution time of LeNet. In this case, there is no idle phase
observable, since the driver is now faster than the hardware. In contrast to
LeNet, the NVDLA also reaches the capacity limits of its internal memory
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for AlexNet. For this reason the first convolution must be split into 5 tiles
(see Table 2), as the ifmap does not fit into the 512 KiB convolution buffer
as a whole. Using this information from the compiler mockup the analytical
model was able to predict the amount of data required 100% accurately. The
total inference time of 6.124ms was accurately predicted to about 88% with an
estimate of 5.416ms. The performance sheet overestimated the performance of
the NVDLA again with 2.3ms by a factor of 2.7x. The roofline graph depicted
in Fig. 10 shows a lot of similarity to LeNet’s graph. Again a huge variety
of operational intensities for convolutional layers can be oberserved, reaching
from 888 Ops/Byte for the first layer to 8 Ops/B for the last one.

Table 2 Results of AlexNet. In all cases the bias is dominated by the corresponding con-
volutional/fully connected layer.

Layer tlayer,am tlayer,hy tlayer,ps bound dweight difmap dofmap nops

Unit µs µs µs {c,m} B B B operations
conv1-1 479.2 497.2 102.9 c 69,760 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-2 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-3 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-4 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-5 279.5 279.5 0 c 0 255,360 0 286,218,240
(bias) 0 0 0 - 192 0 75,264 36,960
relu1 18.5 18.2 0 c/m 0 591,360 591,360 290,400
norm1 72.6 79.3 0 c 0 654,720 654,720 290,400
pool1 72.6 72.6 0 c 0 591,360 145,152 290,400
conv2 583.2 588 218.7 c 614,400 145,152 0 597,196,800
(bias) 0 0 0 - 512 0 387,072 186,624
relu2 12.1 11.7 0 c/m 0 387,072 387,072 186,624
norm2 46.7 50.8 0 c 0 428,544 897,536 186,624
pool2 46.7 46.7 0 c 0 387,072 93,184 186,624
conv3 146.0 149.6 64.9 c 1,769,472 93,184 0 149,520,384
(bias) 0 0 0 - 768 0 139,776 64,896
relu3 4.4 4.1 0 c/m 0 139,776 139,776 64,896
conv4 219 224.4 48.7 c 1,327,104 139,776 0 224,280,576
(bias) 0 0 0 - 768 0 139,776 64,896
relu4 4.4 4.1 0 c/m 0 139,776 139,776 64,896
conv5 146 151.4 32.4 c 884,736 139,776 0 149,520,384
(bias) 0 0 0 - 512 0 93,184 43,264
relu5 2.9 2.7 0 c/m 0 93,184 93,184 43,264
pool5 10.8 10.8 0 c 0 93,184 18,432 43,264
fc6 1180.2 1792.6 1152.4 m 75,497,472 18,432 0 603,979,776
(bias) 0 0 0 - 8,192 0 8,192 4,096
relu6 0.3 0.3 0 c/m 0 8,192 8,192 4,096
fc7 524.7 525.5 512.3 m 33,554,432 8,192 0 268,435,456
(bias) 0 0 0 - 8,192 0 8,192 4,096
relu7 0.3 0.3 0 c/m 0 8,192 8,192 4,096
fc8 128.2 128.8 125.2 m 8,192,000 8,192 0 66,060,288
(bias) 0 0 0 - 2,048 0 2,048 1,008
softmax 0 0 0 - 0 0 0 0
Total 5415.5 6124.4 2257.4 - 121.9 · 106 6 · 106 4.6 · 106 4.3 · 109
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pool*

CONV_CORE

SDP64 GB/s

relu*

fc6
fc7
fc8

conv3
conv4
conv5

conv2

conv1-1
norm*

PDP/CDP

conv1-{2,3,4,5}

Fig. 10 Applying a roofline graph on the obtained results of AlexNet.

The largest deviation of the analytical model is found in layer ”fc6”. An
analysis of this layer showed that the size of the required data causes the
compiler to switch the convolution buffer to work in a single buffer mode, so
that convolution and memory transfers no longer run in parallel. This cor-
responds to Mode 3 as described in Subsection 3.4. To model this effect the
corresponding layer can be divided into a compute task and a memory task.
This approach is pursued in the following subsection.

3.6 Divide and Conquer

As already mentioned one flaw of Roofline model is the ideal assumption of a
perfect parallelism (see Fig. 11 a)). According to the Roofline model, a task
comprises two subtasks: a memory subtask, and a compute subtask, both run-
ning in parallel whereby the slower task determines the overall performance.
This assumption is already incorrect to some extent for any compute process,
as an initial chunk of data has to be fetched before any calculations can begin.
Furthermore, the result can only be written back after all calculations have
been done (see Fig. 11 b)). In some cases the data subtask and compute sub-
task run entirely sequentially. This behaviour was observed for AlexNet’s ”fc6”
layer. Consequently, the Roofline model, and thus AMAIX, underestimates the
time required for a layer.

A more accurate model would subdivide a layer even further into different
phases, and apply the roofline model for each of them. This follows the same
divide-and-conquer paradigm already mentioned in the introduction where
a whole CNN was split in multiple layers in order to increase the model’s
accuracy. Using this refined approach for the example depicted in Fig. 11 b)
would result in five possible phases p1, ..., p5 which have to be considered
accordingly.

In order to establish such a model for the NVDLA, we analyzed the source
code and ran annotated SystemC simulations to obtain the results depicted in



P
R

E
P

R
IN

T
-

pu
bl

is
he

d
in

IJ
P

P
20

22
,d

oi
:1

0.
10

07
/s

10
76

6-
02

2-
00

72
8-

3

18 Niko Zurstraßen et al.

Fig. 11 Comparing the time to finish a layer from the established analytical model (t1) to
a more realistic case (t2).

Fig. 12 Activity of different hardware units for LeNet’s first convolutional layer. CDMA_DAT is
a DMA responsible for fetching the ifmap while CDMA_WT fetches the weights. The processing
results from CMAC are written back to the main memory by the CDMA_WT. Note that the
annotated SystemC simulation is not as accurate as the RTL simulation, but it’s functional
correctness already allows deep insights.

Fig. 12. The investigation showed that the NVDLA can exhibit a considerable
warm-up phase for convolutions. In order to start with the processing, the
whole ifmap needs to be fetched and at least one so-called kernel group (a
group of 16 kernel cubes) needs to be available. In order to keep the model
simple, the convolution is only divided into these two most important phases.
As can be seen in Fig. 12, further phases can easily be defined if desired. A
mathematical description can be formulated as follows:

tp1 =
dp1

memorypeak

dp1 =

{
dkgroup + difmap if dkgroup > difmap

difmap +min(difmap, dweight) if dkgroup ≤ difmap

dkgroup =

⌈
bk · min(16, k) · kh · kw · ic

atomAXI

⌉
· atomAXI

The second phase still follows the equations formulated in Section 2.1. Only
the amount of data needs to be adjusted for the initial chunk that will already
be loaded:

dtotal = difmap + dweight + dofmap − dp1

The model can be further improved by considering layers that need to run
in a sequential fashion due to convolution buffer capacity constraint (Mode
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6, Subsection 3.4). For example, assuming a sequential execution instead of
parallelized one increases AlexNet’s layer ”fc6” execution time from 1180.2µs to
1769.8µs. While modeling an offset phase only increased the accuracy by about
1% per layer, assuming a sequential execution had by far the biggest impact.
The analytical model’s accuracy increased from 88% to 98% for AlexNet.

The drawback of the divide-and-conquer approach is an increased com-
plexity of the analytical model. In case of the NVDLA, the new model also
introducess phases with operational intensities of 0 or infinity, making it dif-
ficult to plot them in roofline graphs.

3.7 Design Space Exploration

Since the simulation results have shown that AMAIX allows precise predic-
tions to be made, it will be used to explore the NVDLA’s design space in this
section. The NVDLA has over 30 different hardware parameters that can be
individually set to provide a suitable configuration for each application. Some
of these parameters are also found in the analytical model. For example, the
width and depth (Tc (depth) and Tk (width)) of CONV_CORE’s MAC unit. The
performance of AlexNet in frames per second is shown regarding these param-
eters in Fig. 13. The tuples (width, depth) are chosen such that their product
is constant, which corresponds to a constant area. The analysis shows that be-
sides the full configuration of the NVDLA there are other configurations that
theoretically allow a faster execution of AlexNet. However, with a convolution
buffer size of 512KiB the design space is limited to the highlighted area of the
graphs. Thus the NVDLA full configuration seems to be optimal for AlexNet
given the convolution buffer constraint. This result cannot be verified using

fr
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d

Fig. 13 Design space exploration of the CONV_CORE using AlexNet.

the NVDLA. Although the hardware synthesis of the NVDLA configurations
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is possible, the drivers so far only support the full, large and small NVDLA
configuration.

4 Conclusion & Outlook

In this paper the novel AMAIX aproach for the inference performance esti-
mation of DLAs was proposed and evaluated. AMAIX’s design allows for a
generic representation of DLAs, due to its configurable scaling factors. Its per
layer modeling approach is a reasonable compromise between model complex-
ity and accuracy as shown in the detailed case study. In case the accuracy
is considered not high enough, it was shown that layers can be further split
up using a divide-and-conquer paradigm, to which the Roofline model is then
applied again. As shown in the conducted case-study using the NVDLA, the
layer-wise AIMAX model predicted the inference time with an accuracy of
88% for AlexNet and 98% for LeNet compared to an accurate RTL emulation.
For AlexNet the accuracy can be increased to 98% by using the more detailed
model. In addition, it was shown that AMAIX can be used for design space
exploration, especially since it can be evaluated several orders of magnitude
faster than a Verilog or SystemC simulation.

In future work, it would be interesting to apply AMAIX to other DLA
architectures as well. Another promising application are compiler optimiza-
tions. At many points, a compiler for DLAs must make the decision whether
to accept additional data transfers for more compute performance. This con-
cerns, for example, the selection of the convolution mode from Section 3.4.
Here, the compiler has to decide whether the ifmap is tiled, i.e. more data
transfers are generated, or whether the single buffer mode is used, which re-
duces performance due to its sequential execution. Using an analytical model,
a sophisticated decision could be made at this point. A further example is
the decision between Winograd convolution and standard convolution. While
Winograd convolution can usually be calculated much faster, it still requires
more weight data. It should therefore only be used if the system is compute
bound. This compiler could be further refined to a situation-aware just-in-
time compiler as some parameters such as the available memory bandwidth
are hard to predict in advance.
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6 Appendix

6.1 Example Calculations for LeNet

The following calculations of LeNet’s conv1 and subsequent bias layer showcase
how the results of Table 1 are obtained. Layer and kernel sizes from were taken
from Caffe’s publicly accessible LeNet implementation [1].

6.1.1 NVDLA configuration and layer sizes

Tc = 64, Tk = 16, cbufwidth = 128, throughputX = 16,

bi = bk = bo = 2

memorypeak = 64GB/s, clock = 1GHz

conv1 : i = (28, 28, 1), k = (5, 5, 1, 20), o = (24, 24, 20)

bias : i = (24, 24, 20), k = (1, 1, 1, 20), o = (24, 24, 20)

6.1.2 Number of ifmap bytes for conv1

pad(c, b) =

⌈
c · b

atomNVDLA

⌉
· b−1 · atomNVDLA

pad(1, 2) =

⌈
1 · 2
32

⌉
· 0.5 · 32

= 16

ddarkBW (w, h, c, b) = (wmod 2) · h · pad(c, b) · b
ddarkBW (28, 28, 1, 2) = (28mod 2) · 28 · pad(1, 2) · 2

= 0

scaleifmap = pad(ic, bi) ·
bi
ic

+
ddarkBW (iw, ih, ic, bi)

iw · ih · ic

= pad(1, 2) · 2
1
+

ddarkBW (28, 28, 1, 2)

1 · 28 · 28
= 32

difmap = scaleifmap · iw · ih · ic
= 32 · 28 · 28 · 1
= 25, 088
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6.1.3 Number of weight bytes for conv1

scaleweight =

⌈
bk · kw · kh · ic · kn

cbufwidth

⌉
· cbufwidth

kw · kh · ic · kn

=

⌈
2 · 5 · 5 · 1 · 20

128

⌉
· 128

5 · 5 · 1 · 20
= 2.048

dweight = scaleweight · kw · kh · kc · kn
= 2.048 · 5 · 5 · 1 · 20
= 1024

6.1.4 Number of operations for conv1

scaleops =

⌈
ic
Tc

⌉
·
⌈
kn
Tk

⌉
· Tk · Tc

ic · kn

=

⌈
1

64

⌉
·
⌈
20

16

⌉
· 16 · 64
1 · 20

= 102.4

nops = scaleops · ow · oh · oc · kw · kh · kc
= 102.4 · 24 · 24 · 20 · 5 · 5 · 1
= 29, 491, 200
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6.1.5 Number of ofmap bytes bias

pad(20, 2) =

⌈
20 · 2
32

⌉
· 0.5 · 32

= 32

ddarkBW (24, 24, 20, 2) = (24mod 2) · 24 · pad(20, 2) · 2
= 0

scaleofmap = pad(oc, bo) ·
bo
oc

+
ddarkBW (ow, oh, oc, bo)

oc · ow · oh

= pad(20, 2) · 2

20
+

ddarkBW (24, 24, 20, 2)

20 · 24 · 24
= 3.2

dofmap = scaleofmap · ow · oh · oc
= 3.2 · 24 · 24 · 20
= 36, 864

6.1.6 Number of operations for bias

scaleops =

⌈
iw · ih · pad(ic, bi)
throughputX

⌉
· throughputX
ow · oh · oc · kw · kh · kc

=

⌈
24 · 24 · pad(20, 2)

16

⌉
· 16

24 · 24 · 20 · 1 · 1 · 1
= 1.6

nops = scaleops · ow · oh · oc · kw · kh · kc
= 1.6 · 24 · 24 · 20 · 1 · 1 · 1
= 18, 432
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6.1.7 Performance, total data and layer time

dtotal = difmap + dweight + dofmap

= 25, 088 + 1024 + 36, 864

= 62, 976

performancepeak(conv1) = Tk · Tc · clock
= 16 · 64 · 1GHz

= 1024Gop/s

opintensity(conv1) = nops/dtotal

= 29, 491, 200/62, 976

= 468.29

performance(conv1) = min( 1024Gop/s, 4.68 · 64Gop/s )

= 1024Gop/s

performancepeak(bias) = throughputX · clock = 16 · 1GHz

= 16Gop/s

opintensity(bias) = 18, 432/62, 976

= 0.293

performance(bias) = min( 16Gop/s, 0.293 · 64Gop/s )

= 16Gop/s

tlayer = max

(
29, 491, 200

1024 · 109
s,

18, 432

16 · 109
s

)
= max (28.8µs, 1.15µs)

= 28.8µs


