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Abstract—As developers struggle with the ever rising com-
plexity of HW/SW systems, the demand for high-performance
full system simulators increases. So called virtual platforms,
built using SystemC TLM 2.0, have tried to fill that need for
early software verification and HW/SW co-design. Unfortunately,
the increasing system complexity has not left the simulator’s
performance untouched. As they are sequential, adding more
simulation components slows simulation execution. Temporal
decoupling was introduced to satisfy the requirement of ever
higher simulation speed by sacrificing some simulation accuracy.
This is implemented by allowing simulation components to run
ahead of the global simulation time by a static, predefined amount
of time called quantum. The standardized SystemC TLM 2.0
static quantum approach however, does not lead to general
performance improvements in all scenarios. One of the main
reasons for this is, that the requirements towards the temporal
decoupling strategy change over the simulation’s duration and
depend strongly on the executed target software. Therefore, a
novel adaptive temporal decoupling technique is proposed in
this work, that takes these requirements into account. This is
achieved by non-invasive runtime profiling of the simulation and
a later optimization of the temporal decoupling strategy using
the gathered information. As shown in the case study of this
work, the technique allows for performance increases of up to
5.87x compared to SystemC’s static quantum approach in the
presented benchmarks.

Index Terms—Electronic System Level, Transaction Level
Modeling, SystemC, Temporal Decoupling

I. INTRODUCTION

Embedded systems have become ubiquitous, more powerful,
and smaller over the past decades and they are evolving at
a fast pace. Therefore it has become increasingly important
to verify their correct functionality early in the design cycle.
SystemC TLM 2.0 full system simulators, so called Virtual
Platforms (VPs), are the standard tool for target software
verification [1]. Making a VP available early, allows software
development to start months before the actual hardware is
available. As the VP and the hardware design can evolve in
parallel, HW/SW co-design is enabled.

However, as system complexity rises so does the complexity
of the VP. Because the SystemC TLM 2.0 simulation kernel is
sequential, this rise in complexity leads to reduced simulation
performance. Temporal decoupling is a common simulation
acceleration technique to address this issue. Here, parts of
the simulation are allowed to run ahead of the global sim-
ulation time by a predefined amount of simulation time called
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Fig. 1: Inadequately handled events with static quantum size
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Fig. 2: Adaptive quantum size to handle events in time

quantum. This quantum is usually manually selected and kept
static over the entire simulation duration. The quantum may
also be given in clock cycles. When the temporally decoupled
component has reached the end of its quantum, it synchronizes
time with the rest of the simulation and afterwards starts a new
quantum. As the temporally decoupled simulation component
has to be invoked less frequently to cover the same amount
of simulation time, context switching overhead is reduced and
performance can be increased. However, as the component
runs ahead of simulation time, simulation events might occur
at a point in simulation time, which the component has
already surpassed. They are therefore seen too late or missed
entirely, which introduces inaccuracy. By selecting a large
quantum duration, performance can be maximized, but a larger
quantum duration also results in a larger temporal error. Thus,
a performance-accuracy trade-off has to be made, when using
temporal decoupling. An example for this is depicted in Fig. 1.
Here temporal decoupling is deployed for a CPU core. A static
quantum size of 200 cycles is selected. It can be observed that
there are incoming simulation events to the CPU core during
quantum execution, for example interrupts. As the CPU is
temporally decoupled, it sees those events at the beginning of
its next quantum, when time is synchronized with the rest of
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the simulation. This leads to a loss in simulation accuracy that
can manifest itself by interrupt handlers being triggered later
than in a cycle-accurate simulation. If this is acceptable de-
pends on the application being simulated. Finding the perfect
quantum duration is a laborious and difficult task. Different
parts of the application might profit from different quantum
sizes and it is not always possible to find an option that fits
all of them. Therefore, setting a static quantum duration for
the entire simulation often leads to suboptimal compromises.

To overcome these issues we propose a target software
behavior-driven temporal decoupling approach in this work. In
our approach, the quantum size is adjusted during simulation
execution to improve simulation performance by adapting to
the requirements of the target software. This is depicted in
Fig. 2. Here the quantum size is reduced so that fewer events
are handled too late in the temporally decoupled component.
The contributions of this work are:

• A novel adaptive temporal decoupling approach based on
the behavior of the target software

• A representative case study comparing our approach with
the SystemC static quantum

II. RELATED WORK

Increasing simulation performance in VPs while retaining
as much simulation accuracy as possible, has been an actively
researched topic for many years. In this section, related work
is summarized and compared to our approach.

Damm et al. implement a TLM-2.0 model with temporal
decoupling that is connected to a SystemC-AMS model [2].
In their work, the AMS model acts as a streaming data
producer or consumer. The TLM simulation is responsible for
processing or generating this data. Their observation is, that
for long quantum durations, there is an increasing amount
of errors like data packet twists, however the performance
increases due to a decreasing amount of context switches.
They concluded, that for their application temporal decoupling
implies a trade-off between accuracy and speed.

Gläser et al. consider a similar case and describe a method
to adapt the quantum to a suitable length, so all packets can be
processed [3]. They view the analog signals as asynchronous
events and predict their occurrence using an adaptive filter.
A safety margin is subtracted from the predicted time and
the simulator is switched to a cycle-accurate mode until the
event is triggered. Here the performance-accuracy trade-off is
made by adjusting the size of the safety margin. This solution
is optimized for one application whose performance is fully
determined by the rate of received packets. Our approach is
not tailored to a single application scenario and is therefore
more generally applicable.

In [4] the authors analyze a dynamic quantum approach
that sets the quantum duration to the time of the next timed
event notification. This way no timed event notification can
be missed or handled too late. When a simulation component
generates many timed events, the average quantum size of
other components can be decreased resulting in diminished
performance. This occurs, because the SystemC timed event

queue has global scope over all simulation components. An
optimization is proposed, that takes into account whether a
timed event notification is relevant to the component whose
quantum is limited by it. If the event is not relevant, it can
safely be ignored leading to longer average quantum durations
and thus increased performance. The introduced approach
considers only event notifications during simulation execution.
Target software behavior is not examined, even though the
authors acknowledge its performance influence.

A solution that avoids the issue of missed events is proposed
by Jung et al. [5]. Here fork() is used to implement a quan-
tum rollback mechanism. If an event is missed during quantum
execution, the mechanism is used to re-execute this quantum.
The quantum size is reduced accordingly to avoid missing the
event. Correct execution is ensured, but an overhead is incurred
by executing fork() for each quantum. The approach is
focused on correct execution instead of performance. In our
method, a more balanced approach is taken to find a good
trade off between the two.

Another way of increasing performance is the parallelization
of SystemC simulations. Weinstock et al. propose several
methods for achieving near linear speedups. In [6] simulation
objects are assigned to specific threads that are executed
in parallel. A custom simulation kernel is used. Temporal
decoupling is supported between threads, however determining
the optimal quantum duration is again left to the developer.
A similar approach is taken in [7]. Here, a parallelization
framework for standard SystemC kernels is proposed, but
similar limitations apply.

Yet another approach is presented by Stattelmann et al.
in [8]. In their work the target software is compiled for the
simulation host, so no expensive instruction set simulation is
required. Binary annotation is used to capture the timing char-
acteristics of the target. However, some simulation accuracy
is given up compared to using an Instruction Set Simulator
(ISS) as in our approach. In [9] the authors describe how a
full multi-core system can be simulated with host-compiled
target software.

III. BEHAVIOR-DRIVEN TEMPORAL DECOUPLING

Choosing the quantum size aptly is important for perfor-
mance and accuracy of the entire VP. However, this is a not
a trivial task, as many factors influence the VP’s temporal
behavior, such as the implementations of the VP’s models,
the combination of models and the interaction between them,
as well as the target software’s behavior and its interaction
with the models. Different phases of target software execu-
tion require different quantum sizes to perform optimally. In
general, compute intensive phases require a large quantum, so
that the computation can be finished quickly without many
interruptions that incur context switching overhead. On the
other hand, phases with lots of interaction with the virtual
hardware, require a small quantum, so that the CPU of the
VP can service interrupts quickly. A small quantum also
allows other VP components to execute more frequently which
improves interaction with physical systems outside the VP.
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Fig. 3: Generation and analysis of tracing data

When using a static quantum size, as proposed in the SystemC
TLM 2.0 standard, only a suboptimal compromise is achieved.

Therefore we propose an adaptive quantum approach, in
which the quantum size is adjusted during simulation to the
requirements of the target software. To achieve this, a two-
step methodology is proposed. In a first step, the behavior of
the target software is analyzed while it is executed on the VP.
Trace data is collected during a profiling run and examined
using a trace analysis tool. In a second step, the insights gained
from the analysis are employed to optimize the quantum size
during simulation execution to improve performance.

A. Behavior Analysis

An overview of the behavior analysis flow is shown in
Fig. 3. To analyze target software behavior, its interactions
with the VP are traced and recorded to a trace file during a pro-
filing run. Our tracing approach is non-invasive and needs no
target software modification. An ELF file of the target software
with debug symbols is required. Ideally, source code should
be available for inspection but it is not necessary. As many
embedded systems execute Operating Systems (OSs), such as
the Linux kernel, our approach focuses on this scenario, but
is not limited to it. Here, the target software can be divided
into two parts: the applications running in user space and the
kernel running in kernel space. Applications access hardware
by issuing system calls to the kernel, which invokes the device
driver in accordance with the requested action. Interaction
between the driver and hardware is facilitated using Memory-
Mapped Input/Output (MMIO) and interrupts.

In VPs, MMIO is modeled using the blocking transport
interface, while interrupts are implemented as sc_signals.
Both are traced by a tracing component. To correlate them
with target software execution, the Program Counter (PC)
is traced as well. To reduce tracing overhead, the data is
processed by a separate trace file writer thread. Since the
tracer produces large amounts of data, on-the-fly compression
is employed. Tracing the PC for every instruction is expensive,
thus execution is only traced at basic block level, which is
sufficient for reconstructing target software execution.
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Fig. 4: Adaptation of quantum size with target software
annotations

Once trace file generation is finished, it is processed by
the trace analysis tool. In addition to the trace file, the ELF
file of the target software is needed to lookup the functions
corresponding to the recorded PCs. In the analysis step, several
metrics are calculated. For each function in the ELF file, the
total number of induced TLM blocking transport transactions
is computed. This is used to weigh functions according to
the amount of MMIO interaction they generate. Interrupts
are traced to identify functions that are relevant for interrupt
handling. For this, target software execution is analyzed over
all executed quanta. If an interrupt is pending in the CPU
model at the beginning of a quantum, the interrupt handlers are
executed. To identify interrupt relevant functions, the number
of times a function is executed during quanta with and without
a pending interrupt is compared. If a function is executed more
often in quanta with a pending interrupt, it is deemed relevant.

When handling the interrupt, the generic OS interrupt
handlers are invoked, which then call device-specific interrupt
handlers. As these generic handlers are also deemed relevant
by the metric above, the analysis tool offers an automatic caller
function filter. This filter inspects the call stack of the invoked
functions to reduce the amount of misclassified functions. A
function is deemed more relevant if it has no or a low number
of interrupt relevant functions in its call stack.

Once analysis is complete, functions with a high interrupt or
transaction activity are written into a candidate function file,
which is used in the second step of our method to optimize
the VP’s performance.

B. Optimized Temporal Decoupling

After a list of candidate functions is generated, it is used
to optimize the VP’s performance by adjusting the quantum
size to the requirements of the target software adaptively
during simulation. A qualitative graph of this approach is
shown in Fig. 4. Simulation is started at a base quantum
qbase. The quantum duration is reduced when predefined
annotation points in the target software are reached. These
are the candidate functions from the previous step. With each
reached annotation point, the quantum duration is reduced by
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Fig. 5: Overview of AVP64 used for case study

a factor of A ∈ [0, 1]. A lower bound to the quantum duration
is defined as qmin:

qnext =

{
A ∗ qcur., if > qmin

qmin

The quantum size is increased slowly with every quantum that
is executed without an annotation point being reached. The
speed at which the quantum size is increased towards qbase
is determined by a factor B ∈ [0, 1], by which the difference
between the current quantum size and qbase is multiplied. In
addition, a constant C can be used to define a minimum step
size:

qnext =

{
B ∗ (qbase − qcur.) + qcur., if(qnext − qcur.) > C

C + qcur.

In phases of high hardware interaction annotation points will
be reached often, leading to small quantum durations, which
increases the VP’s accuracy. In compute intensive phases,
few annotation points are reached. This leads to a rise in
quantum size, increasing compute performance. In summary,
increase and decrease are working against each other to yield
an optimized quantum duration depending on the execution
phase of the target software.

For specifying the annotation points, two options are sup-
ported. The first option is the insertion of annotation points
into the target binary using semihosting instructions. This is
useful for target software that is relocated during execution.
The instructions can be added directly to the binary without
source code or recompilation. However, this is problematic if
the executable is cryptographically verified during execution.

To address this, the second option provides an automatic,
non-invasive annotation method. Here, annotation points are
handled by the ISS of the VP’s CPU model. For this, the
address of the candidate function is extracted from the ELF
file. When the ISS reaches an annotation point, a callback is
executed triggering the adaptive quantum mechanism.

IV. CASE STUDY

A state-of-the-art VP was extended to include the required
functionality and two benchmarks were undertaken to study
the performance of our approach. All experiments were con-
ducted on a host powered by an Intel Core i5-8250U with

16GB of RAM running Linux 5.9. The AVP641 VP was
used as a basis for the experiments. An overview of the VP
is provided in Fig. 5. It consists of an ARMv8 processor
model based on QEMU [10]. In addition it includes several
peripherals such as an OpenCores ethoc Ethernet controller
model, which is connected to the host through a Linux TAP
device. An SDCard, connected to an SDHCI, holds the root
file system of the Linux target software. The peripherals are
connected to a CoreLink GIC-400 interrupt controller model
using SystemC signals. The bus connections are realized with
TLM sockets. As target software Linux 4.19 was used. GCC
10.2.0 was used for compilation on the host, while target
software was compiled using GCC 7.5.0 for Aarch64.

The first benchmark uses the iperf3 utility2 to measure TCP
throughput to and from the VP. In this scenario iperf3 is started
on the host and in the VP. To ensure correct calculation of the
bandwidth against wall-clock time, measurements are taken on
the host side. The VP’s ethoc Ethernet controller uses Direct
Memory Access (DMA) to process Ethernet frames. Ethoc’s
DMA buffer can store multiple frames, so the CPU can run
other tasks, while ethoc is processing frames. The DMA is
modeled by two SystemC threads, one for receiving and one
for sending data. Each thread is executed once per quantum, so
one packet can be sent or received. The completion of packet
transfers is signaled via interrupt.

Function IRQ factor Transactions
ethoc_poll 2.07555 70548
ethoc_interrupt 13.8666 17143
gic_handle_irq 13.7583 9770
el0_svc_handler 2.04372 6933
__vfs_read 2.54092 6410
inet_recvmsg 2.38733 6026
add_interrupt_rand. 13.8189 5511
lock_sock_nested 3.02146 5160
__handle_domain_irq 12.6598 4724
generic_handle_irq 13.7921 4712
handle_fasteoi_irq 13.7965 4679
sock_read_iter 2.38733 4673

TABLE I: Annotation candidates for iperf3 benchmark

The Linux driver for ethoc registers an interrupt handler.
In case a packet is sent or received, the interrupt handler is
disabled and the network device is switched to polling mode.
This is done to reduce interrupt overhead under the assumption
that additional packet transfers will follow. Once no more
packets are in ethoc’s send buffer, the driver leaves polling
mode and reenables the interrupt handler.

To optimize the performance of iperf3 on AVP64, a trace
is recorded during benchmark execution. The resulting trace
file is analyzed using the trace analysis tool to yield candidate
functions with their corresponding transaction and interrupt
activity, which are shown in Table I.

The IRQ factor describes how often a function is executed
in quanta with a pending IRQ, compared to quanta without
one, while the transactions indicate the amount of induced

1https://github.com/aut0/avp64
2https://fasterdata.es.net/performance-testing/network-troubleshooting-

tools/iperf/
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Fig. 6: Receive and send throughput for different temporal
decoupling schemes

MMIO. The ethoc_interrupt and the ethoc_poll
functions are part of the ethoc driver. The first one is called
when an ethoc interrupt is received, while the second one is
called after the device is switched to polling mode. Both can
be annotated for the adaptive quantum approach. The input
parameters were chosen as A = 0.5, B = 0.1, C = 1 µs. The
results are presented in Fig. 6 for receiving and sending data.
The adaptive quantum scheme with different qmin and qbase is
compared to a static quantum with the size of qbase. Both the
receive and send throughput profit from the adaptive quantum.
For the static quantum the TCP throughput is reduced with
rising quantum size. In the receive scenario, performance
is significantly reduced for quantum sizes larger than 5 µs,
because the incoming packets cannot be processed fast enough
by the ethoc model since more simulation time is spent in the
CPU model. Receive performance is constant above 100 µs,
because the incoming packets are processed in one quantum
and the CPU executes a Wait-for-Interrupt instruction which
ends the quantum early effectively reducing quantum size.

The adaptive quantum is beneficial to the TCP throughput
for all tested minimum quantum durations and in both the send
and receive scenario. It should be noted, that both considered
annotation candidates produce the same result. In the receive
scenario, the adaptive quantum with a qmin of 1 µs performs
best. It leads to a performance improvement between 1.08x
and 5.87x over the static quantum depending on the base
quantum duration. In the send scenario, the adaptive quantum
with a qmin of 1 µs performs best in most cases except
for the largest tested base quantum duration of 10 000 µs.
A performance improvement of between 1.18x and 1.81x is
achieved. In the latter case, the adaptive quantum with a qmin

of 5 µs performs better, reaching 1.94x of speedup.
As the quantum is effectively reduced with the adaptive

quantum approach, it could be speculated that even though
throughput is increased, the compute performance of the VP
as a whole is reduced. A second benchmark with additional
compute load for the CPU model is conducted to investigate
this effect. For this, data is again transferred between host
and VP via the virtual ethoc device and the throughput is
measured. This time the SHA256 hash of the received data
is computed in the VP. To simulate higher compute load, the
hash function is applied multiple times. The results are shown
in Fig. 7. Again a static quantum approach is compared to our
adaptive quantum with different minimum quantum size qmin.
The input parameters were left unchanged. It can be observed
that for increasing amounts of computation the static quantum
sweet spot moves towards higher quantum durations, as the
increased compute load profits from them.

However, our adaptive quantum approach is still able to
outperform the static quantum in most cases. Compared to the
previous benchmark, the ideal qmin for the adaptive approach
is at 5 µs instead of 1 µs. This is plausible as the added compute
load requires a larger quantum duration to be calculated
efficiently. When the SHA256 hash of the received data is
calculated once, the static quantum performs best with a base
quantum duration of 5 µs. The adaptive quantum is not able
to increase performance at this base quantum duration. This is
because reducing the quantum size decreases performance for
the compute task. For larger base quanta the adaptive quantum
with a qmin of 5 µs outperforms the static quantum by a factor
between 1.21x and 2.45x. Only with a base quantum of 10 µs
a qmin of 1 µs performs slightly better.

A similar picture is painted for the increased load scenarios
where the SHA256 is calculated 5 or 25 times. In the first case,
the adaptive quantum with a qmin of 5 µs performs best in most
scenarios. Speedups between 1.21x and 1.72x over the static
quantum are achieved. The overall throughput is reduced, as
the CPU model requires time to calculate the hash function.
At a base quantum of 5 µs the adaptive approach is not able
to outperform the static quantum, but performs on par. For
the second case, the throughput is further reduced, but the
compute intensity of the task has been significantly increased.
The adaptive quantum with a qmin of 5 µs performs best and
is able to achieve speedups between 1.05x and 1.33x over the
static quantum. At a base quantum duration of 10 000 µs the
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Fig. 7: Receive throughput with varying SHA256 compute
load

adaptive quantum with a qmin of 10 µs performs slightly better
achieving a speedup of 1.13x instead of 1.11x. However, at a
base quantum duration of 5 µs the adaptive quantum performs
slightly worse than the static quantum.

V. CONCLUSION

In this work, a novel approach to temporal decoupling in
SystemC TLM 2.0 Virtual Platforms (VPs) was presented.
Our method differentiates itself by taking the behavior and
requirements of the target software into account when set-
ting the SystemC quantum duration during simulation. The
quantum duration is adapted to the target software to optimize
the simulation performance. This is achieved in a two step
process. First the target software behavior is analyzed during
a profiling run. Interactions between target software and VP
are captured and stored to a trace file. The trace is used as
the basis for the analysis. Using our analysis tool, annotation
points in the target software are determined. These annotation
points are exported to a candidate function file that is used
for annotation in the VP. In the second step of the process,
the annotation points are used by the VP during runtime to
adapt the quantum size to the target software behavior. The
achievable performance gains were shown in a representative
case study with speedups between 1.08x and 5.87x.

For future work we will test our method on more complex
benchmarks, as finding good annotation candidate functions
is not trivial. Adding Linux kernel instrumentation to trace
user space process execution when hardware is accessed from
user space, e.g. via Userspace IO drivers, would extend the
applicability of our method. Furthermore, adding instrumenta-
tion to trace interaction between different cores in a multi-core
system is an option. The method relies on the availability of
debug information. It could be extended to also cover stripped
binaries without any additional information.
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[3] Gläser et al., “Temporal decoupling with error-bounded predictive quan-

tum control,” in FDL. IEEE, 2015.
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