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Abstract. In recent years the growing popularity of Convolutional Neu-
ral Networks (CNNs) has driven the development of specialized hard-
ware, so called Deep Learning Accelerators (DLAs). The large market
for DLAs and the huge amount of papers published on DLA design show
that there is currently no one-size-fits-all solution. Depending on the
given optimization goals such as power consumption or performance,
there may be several optimal solutions for each scenario. A commonly
used method for finding these solutions as early as possible in the design
cycle, is the employment of analytical models which try to describe a
design by simple yet insightful and sufficiently accurate formulas. The
main contribution of this work is the generic Analytical Model for AI ac-
celerators (AMAIX) for the estimation of CNN inference performance on
DLAs. It is based on the popular Roofline model. To show the validity of
our approach, AMAIX was applied to the Nvidia Deep Learning Accel-
erator (NVDLA) as a case study using the AlexNet and LeNet CNNs as
workloads. The resulting performance predictions were verified against
an RTL emulation of the NVDLA using a Synopsys ZeBu Server-based
hybrid prototype. AMAIX predicted the inference time of AlexNet and
LeNet on the NVDLA with an accuracy of up to 88% and 98% respec-
tively. Furthermore, this work shows how to use the obtained results for
root-cause analysis and as a starting point for design space exploration.

Keywords: Deep Learning Accelerators · Analytical Models · Design
Space Exploration · Roofline Model

1 Introduction

CNNs have become part of our everyday life in the last years. They can be
found in many different applications such as smartphones, data centers, and
autonomous driving systems [3, 9, 11]. These different applications have varying
requirements regarding their Key Performance Indicators (KPIs) such as perfor-
mance, area, power consumption, or cost. Executing CNNs on general purpose
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CPUs does often not fulfill these requirements. Therefore, specialized integrated
circuits, called Deep Learning Accelerators (DLAs), are developed to mitigate
this issue. Designing a DLA is not a trivial task, since a DLA usually consists of
different acceleration units for different CNN layers. Each of these units has con-
figuration parameters, leaving the designer with a large design space to explore.
For example, the number of Multiply-Accumulate (MAC) units in an accelera-
tor directly influences area, cost, power consumption, and performance. As this
work shows, the optimal configuration of a DLA regarding performance strongly
depends on the prospective workload, which should therefore also be considered
from the very beginning. All these considerations should be included as early
as possible in the development process. Although parameters can be altered in
later stages as well, small modifications usually entail a series of further changes,
especially if the design is already in a more advanced development stage. The
more advanced the design is, the higher the costs for the alterations will be.

Common methods to perform early estimates are high-level architecture sim-
ulations, also called pre-RTL simulations, and analytical models. Both methods
have been applied in DLAs design [2, 4, 5, 10]. However, most approaches focus
strongly on the hardware structure to be developed and merely regard the model
as a byproduct. These models are usually very specific and therefore cannot be
generalized for designing new DLAs. A more generic approach is the Eyexam
framework proposed in [4]. It shows how a performance evaluation of an arbi-
trary DLA can be created within seven refinement steps. However, the authors
only provide a general overview of how these steps have to be applied and do
not mention any formulas or further instructions.

In contrast, this paper presents a novel generic analytical model to esti-
mate the inference performance of an arbitrary DLA. It is based on the popular
Roofline model since the assumptions of data/processing parallelism and a small
control flow overhead hold valid for most DLA designs [12]. The model still re-
quires characterization regarding the DLA’s hardware architecture, but provides
a structured and systematic approach to attain it. Other KPIs such as power or
area are left for future work. As a case study the model is applied to the Nvidia
Deep Learning Accelerator (NVDLA), which was chosen because its open-source
RTL implementation and compiler permit to verify the model in great detail.
Hence, the estimated inference performance is compared to the results obtained
by executing the unmodified NVDLA RTL code in a hybrid prototype using
Synopsys ZeBu Server. In addition the estimates are compared to the official
Nvidia NVDLA performance sheet [1]. The major contributions of this work are
as follows:

• The broadly-applicable AMAIX model for inference performance estimation
of DLAs
• Detailed case study on how to apply AMAIX using the NVDLA
• Evaluation of AMAIX’s accuracy using hybrid emulation
• Assessment of AMAIX for NVDLA design space exploration
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2 The AMAIX Approach

This section deals with the main contribution of this work: AMAIX, a generic
analytical model for predicting DLA inference time. When using the Roofline
model, which AMAIX is based upon, the designer needs to determine the opera-
tional intensity of the application that is modeled. An assumption of the Roofline
model is that the operational intensity (the number of operations per byte) dur-
ing the execution of a task is constant and that the memory and processing
resources used do not change. This is depicted in Fig. 1a), where the memory-
bound cnn0 task is modeled. If one of these conditions is not fulfilled, a task
can be divided into further subtasks, which are mapped to different resources
and can have different operational intensities. This is depicted in Fig. 1b). Here
the different tasks layer0, layer1, and layer2 are modeled. layer0 is memory
bound by the peak bandwidth ceiling memory1, layer1 is compute bound by
peak performance ceiling proc1, and layer2 is bound by proc0.

operational intensity

G
o
p
/s

cnn0

operational intensity

G
o
p
/s

layer0 layer1 layer2

a) b)

m
em

or
y0

m
em

or
y1

m
em

or
y

proc proc0

proc1

Fig. 1. a) The whole CNN is represented by one task which is mapped to one memory
and one processing unit. b) The CNN is described on a layer level. Different layers
obtain different operational intensities and can be mapped to different memories and
processing units.

Representing an entire CNN as a single task, as for example in [9], was shown
to be too simplistic and imprecise [6]. Experiments have shown that operational
intensities can be quite different depending on the CNN layer. Therefore, the
individual layers that form a CNN must be modeled as individual tasks. In ad-
dition, these tasks are usually mapped to different processing units on the DLA.
For example on the NVDLA, convolutional layers are executed on the CONV CORE

processing unit, while pooling layers are executed on the PDP processing unit.
In AMAIX we propose that the amount of memory transfers, the number of

arithmetic operations and the hardware resources used must be determined per
CNN layer. For this, a mathematical description of CNN layer is introduced as
follows:
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l = 〈i, k, o, map, scaleifmap, scaleweight, scaleofmap, scaleops〉
i = {iw, ih, ic}, k = {kw, kh, kc, kn}, o = {ow, oh, oc}

map ∈ {(proc0,mem0), (proc1,mem1), (proc2,mem1), ...}
scaleifmap : map× i× k × o→ IR

scaleofmap : map× i× k × o→ IR

scaleweight : map× i× k × o→ IR

scaleops : map× i× k × o→ IR

Here, i represents the dimensions (width, height, channels) of the input feature
map (ifmap), o the dimensions of the output feature map (ofmap) and k the
dimensions and number of kernels which are required for a layer’s execution.
Fig. 2 provides an illustration of these parameters. The map parameter spec-
ifies on which hardware resources a layer is executed. The scaling factors are
functions which map a layer’s parameters to a real number to incorporate the
microarchitectural design of the DLA. They indicate how much the examined
data transfers or arithmetic operations deviate from a general model. Since de-
termining the scaling factors correctly is paramount for achieving high modeling
accuracy, a more detailed explanation is given in the following subsections.

ofmap cubeweightsifmap cube

..
.

x

Fig. 2. Visual representation of ifmap, kernel and ofmap parameters

2.1 Determining Data Transfers

The amount of all data transfers (dtotal) for a CNN’s layer is the sum of ifmap
data (difmap), weight data (dweight), and ofmap data (dofmap):

dtotal = difmap + dweight + dofmap

difmap = scaleifmap · iw · ih · ic
dweight = scaleweight · kw · kh · kc · kn
dofmap = scaleofmap · ow · oh · oc
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If scaleifmap = scaleweight = scaleofmap = 1 is used, the general model is
assumed. For example, according to this model the ifmap data is just the number
of ifmap elements at one byte per element. This is the volume of the ifmap
cuboid shown in Fig. 2. The general model is a good starting point for initial
estimates and can be used when there is little information available about the
actual hardware.

In practice, there are a number of effects depending on the DLA microarchi-
tecture and executed algorithms causing a scaling smaller or larger than 1. The
following list gives an overview of influences on the data scaling factors:

– Data reload: On many systems, the size of the on-chip memory is not
sufficient to buffer the entire ifmap, kernel and ofmap. This means that
the same data has to be fetched/written multiple times from/to the main
memory causing an increased scaling factor.

– Data type: Frequently used data types are, for example, int8 (1 B) or fp16
(2 B). This must be considered accordingly.

– Dark bandwidth: When transferring data via a bus system, the size of
the data must be a multiple of the bus width. If this is not the case, dark
bandwidth occurs, which results in a larger scaling factor.

– Zero-padding: The internal word width of a DLA can cause the data to be
padded with zeros increasing the scaling factor.

– Transformation: This applies in particular to convolution operations, which
can not only be implemented by the standard algorithm. Fourier transform,
Winograd convolution, or Toeplitz matrices, can influence the scaling factors.

– Layer fusion: Since the output of one layer is usually the input of another,
data can be kept locally, which allows a data scaling factor of 0.

– Data compression: Data can be compressed resulting in a smaller scaling
factor.

2.2 Determining the Number of Operations

Similar to determining data transfers, a formula for the number of arithmetic
operations for a CNN’s layer is derived:

nops = scaleops · ow · oh · oc · kw · kh · kc

For scaleops = 1 this formula refers to the number of MAC operations needed
for a standard convolution and is also a good first order estimate if no knowl-
edge about the hardware is available. Implementation details of hardware and
algorithms can increase or decrease the number of operations scaling factor. Two
effects play a particularly important role:

– Transformation: Alternative convolution algorithm implementations like
Fourier transform or Winograd convolution usually decrease the amount of
needed operations.
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– Hardware utilization: Many DLA designs have fixed processing engine
sizes resulting only in a 100% utilization if the data’s dimensions comply with
these sizes. Chen et. al. distinguish between the two cases of spatial mapping
fragmentation and temporal mapping fragmentation leading to underutilized
hardware [4]. Since both play an important role in most DLAs, the NVDLA
case study section provides an in-depth explanation on how to quantify this
effect.

After determining all the scaling factors, a detailed Roofline model can be cre-
ated. This is covered in the next subsection.

2.3 Applying the Roofline Model

In this subsection the previously presented assumptions and formulas are joined
together. As a first step, the Roofline model must be reformulated for each layer
l of the CNN L as follows:

performance(l) = min( performancepeak(l), opintensity(l) ·memorypeak(l) )

opintensity(l) =
nops(l)

dtotal(l)

The inference time of a CNN is the sum over all layer time spans tlayer:

tlayer(l) = nops(l)/performance(l)

ttotal(L) =
∑
l∈L

tlayer(l)

Another aspect to be considered is the pipelining of layer operators. Many DLAs
like the NVDLA are systolic architectures on layer-level. If one or more layers
are pipelined, they must be considered as a whole. The following formulas then
apply for a pipeline of layers pipel = {ln, ..., ln+m}:

tlayer(pipel) = max

(
nops(ln)

performance(ln)
, ...,

nops(ln+m)

performance(ln+m)

)
opintensity(ldom) =

nops(ldom)∑
k∈pipel dtotal(k)

Note, that this model assumes that the overhead for filling and draining a
pipeline can be omitted. It can be observed that the slowest unit in a pipeline de-
termines the overall execution time and therefore the performance. A layer ldom
which determines a pipeline’s executions time is called dominating. With all the
formulas and descriptions listed above the model is now ready to be applied to
an example.
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3 Case Study: Nvidia Deep Learning Accelerator

In this section AMAIX, as presented in the preceding section, is applied to the
NVDLA. The key challenge here is to determine the different scaling factors.
This is done for bias and convolutional layers as examples in the following. For
other layers only the results are presented since a detailed description would go
beyond the scope of this paper. With these scaling factors the inference time of
the NVDLA is estimated for the widely-used AlexNet and LeNet CNNs [7, 8].
These times are then compared with the results of an NVDLA Verilog emulation
running in a hybrid prototype based on Synopsys ZeBu Server and Virtualizer.
Finally, it is shown how AMAIX can be used to explore the NVDLA’s design
space.

3.1 Nvidia Deep Learning Accelerator

The NVDLA is an open-source DLA specialised for the inference of CNNs [1].
The project, which exists since 2017, features an open-source SystemC model, a
Verilog implementation as well as a corresponding Kernel Mode Driver (KMD)
and User Mode Driver (UMD). Executables for the NVDLA can be generated
by using the NVDLA compiler. The NVDLA has over 30 configurable hard-
ware parameters. One predefined configuration is the so called NVDLAs full
configuration, which is used in this work since it contains all subprocessors and
extensions. Fig. 3 shows an overview of the NVDLA full configuration.

DRAMHOST CPU
512bit AXI

Fig. 3. Overview of the NVDLA full configuration

It can be observed, that the NVDLA is composed of several specialized
subprocessors for convolution (CONV CORE), activation functions (SDP), pooling
(PDP), normalization functions (CDP), and memory-to-memory transformations
(RUBIK). Also it includes on-chip SRAM and a 512bit wide AXI bus interface.

3.2 Hybrid Emulation Setup

To verify the results obtained from AMAIX, a hybrid prototype based on Syn-
opsys ZeBu Server and Virtualizer was used for comparison. Here the NVDLA
RTL is synthesized for the ZeBu server and then emulated on it, meaning that
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precise behavioral analysis can be undertaken. In our hybrid emulation setup ad-
ditional components such as an ARM Cortex A57 CPU cluster and DRAM are
added to form an entire embedded system. Since these components only need to
be modeled functionally they are part of a Virtualizer SystemC TLM2.0 Virtual
Prototype (VP) that is executed on a host computer. This is depicted in Fig. 4.
VP and RTL emulation are connected via so-called transactors. Physically a
PCIe bus is used for this purpose.

Inside the VP a Linux operating system with the NVDLA drivers is executed
on the ARM cluster. To reduce the system’s overhead, the simulated ARM cores
were clocked at 4 GHz while the NVDLA was clocked at 1 GHz. The DRAM
provided in the VP is purely functional and provides no timing annotation.
Thus the NVDLA’s bandwidth is limited only by its clock speed and bus width,
which corresponds to 64 GB/s for the NVDLA full configuration at 1 GHz. This
approximation was shown to be valid using a Synopsys Platform Architect Ul-
tra pre-RTL simulation. Using this simulation the DRAM access patterns of
the NVDLA were analyzed. It was observed, that nearly 100% of the DRAM
bandwidth can be utilized for weight fetching, which dominates the overall data
traffic.

Using this setup the execution time for most commonly-used networks like
AlexNet or ResNet-18 on the emulated NVDLA is in the range of a few minutes.
This allows us to analyze different scenarios quickly.

ZeBu ServerHost CPU

Virtual Prototype

ARM Cortex A57 DRAM

Fig. 4. Hybrid emulation setup.

3.3 Applying AMAIX

As a first example the scaling factors of a convolutional layer shall be derived.
These layers are executed on the NVDLA’s CONV CORE which provides a maxi-
mum compute power of:

performancepeak = Tk · Tc · clock

With Tk being the width of the NVDLA’s MAC unit (which is part of the
CONV CORE) and Tc being the depth of the MAC unit. The MAC unit implements
a typical weight-stationary architecture which can also be found in other DLAs.
For the NVDLA full configuration with a data type b of fp16, the parameters
resolve to Tk = 16 and Tc = 64.
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As a next step the operations scaling factor is derived as:

scaleops =

⌈
ic
Tc

⌉
·
⌈
kn
Tk

⌉
· Tk · Tc

ic · kn
The formula incorporates the previously mentioned cases of spatial mapping
fragmentation and temporal mapping fragmentation. A spatial mapping frag-
mentation occurs in case of the NVDLA if ic < Tc and kn < Tk apply. Temporal
mapping fragmentation is similar, but refers to ic and kn not being multiples
of Tc and Tk. This means that spatial mapping fragmentation never achieves
a 100% hardware utilization while temporal mapping fragmentation achieves a
100% hardware utilization only in some cycles of the execution (see Fig. 5).

Spatial mapping fragmentation Temporal mapping fragmentation

Fig. 5. Depicting temporal and spatial mapping fragmentation. The overall hardware
utilization is 0.25 in the first case and 0.75 in the second case. For the spatial mapping
fragmentation example each cycle executes 1024 MAC operations. However, only 256
operations contribute to the layer’s result. The other 768 operations are dark opera-
tions.

To model a lower hardware utilization one can either adjust the computa-
tional roof for a given layer or add dark operations. These are operations that
are executed but do not contribute to the actual result. In this work the latter
approach is used since it combines well with the scaling factor approach and
avoids an individual compute roof for each layer.

The next scaling factors discussed are scaleifmap and scaleofmap.
The former can be described as follows for the NVDLA full configuration, where
atomAXI/atomNVDLA = 2, i.e. the AXI bus width is twice the size of the
internal NVDLA word width:

scaleifmap = pad(ic, bi) ·
bi
ic

+
ddarkBW (iw, ih, ic, bi)

ic · iw · ih

pad(c, b) =

⌈
c · b

atomNVDLA

⌉
· b−1 · atomNVDLA

ddarkBW (w, h, c, b) = (wmod 2) · h · pad(c, b)·

Here four influences on the scaling factor explained in Subsection 2.1 occur. The
first one is scaling due to multi-byte data types. The NVDLA uses fp16 as
default which results in bi = 2 and linearly scales the amount of data fetched.
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Secondly, zero-padding occurs. The NVDLA has to work with so-called
atoms because of its internal word width. In the case of the NVDLA full config-
uration, an atom must consist of 32 B in the channel direction. This is represented
by the parameter atomNVDLA. If this is not the case, zero-padding must be ap-
plied. For example, for fp16 data types the channels are always padded to be a
multiple of 16. So, ic = 7 is padded to 16 channels, ic = 17 to 32 channels and
so on.

The third influence on the scaling factor is dark bandwidth. Since the
atomNVDLA is 32 B while the atom of the bus is 64 B (atomAXI) requesting an
odd number of atoms will lead to dark bandwidth. Because the NVDLA reads
data row-wise, an odd row size will lead to dark bandwidth. So, for every row
there are 32 B of dark bandwidth.

Lastly, data reload occurs. In the previous formulas it was assumed that
ifmap and kernel fit into the 512 KiB convolution buffer of the NVDLA full
configuration. However, if this is not the case, the ifmap will be broken into
multiple tiles similar to the algorithm proposed by Zhang et. al. [5]. These tiles
have overlapping areas which result in overall increase of ifmap data. Since the
NVDLA treats the individual tiles as separate layers, this should also be done in
the analytical model. Otherwise, the scaling factor will quickly become complex.

The last scaling factor to be discussed for convolutional layers is the weight
scaling factor scaleweight. Basically the total amount of weights is the volumes of
the kernel cuboids multiplied with the data type and zero-padded to be aligned
with the convolutional buffer’s width cbufwidth. This results in the following
scaling factor:

scaleweight =

⌈
bk ·

kw · kh · ic · kn
cbufwidth

⌉
· cbufwidth

kw · kh · ic · kn

Since the amount of weights is often much greater than cbufwidth which is 128 B
for the NVDLA full configuration, a scaling factor of of scaleweight ≈ 2 is ob-
served for most fp16 cases. The scaling factor for the ofmap is assumed to be 0,
since convolutional layers are usually pipelined with a bias layer which will be
considered in the following:

scaleofmap = 0

The next layer to be considered is the bias layer. It always succeeds a con-
volutional layer and is executed in a pipelined fashion on the NVDLA’s SDP.
Since it has a fixed throughput of throughputX ifmap elements per cycle, it is
straightforward to determine the operational roof and operation scaling factor
as follows:

comproof = throughputX · clock

scaleops =

⌈
iw · ih · pad(ic, bi)

throughputX

⌉
· throughputX
ow · oh · oc · kw · kh · kc
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Since a bias layer is always pipelined after a convolutional or an IP layer, there
is no ifmap data to fetch, so:

scaleifmap = 0

The ofmap follows the same principles as before:

scaleofmap = pad(oc, bo) · bo
oc

+
ddarkBW (ow, oh, oc, bo)

oc · ow · oh

As the formula shows, the case ow = oh = 1 is particularly problematic, because
here about 50% of the data traffic would consist of dark bandwidth. This is the
case after every fully connected layer. Therefore, the NVDLA can be operated in
a compact mode in which data is read channel-wise rather than row-wise. This
reduces the dark bandwidth to a minimum, resulting in the following formula:

ddarkBW (w, h, c, b) = atomNVDLA ·
(⌈

c · b
atomNVDLA

⌉
mod 2

)
The bias data is transmitted sequentially, therefore the scaling for the weights
depends only on the dark bandwidth related to the data type:

scaleweight =

⌈
kn · bk

atomAXI

⌉
· atomAXI

Since one bias value is needed per output channel, kw = kh = kc = 1 and
kn = oc applies. In addition, a bias has no influence on the dimensions, so
iw = ow, ih = oh and ic = oc always apply.

Besides bias and convolutional layers there are a number of other layer
types for which this methodology was applied. However, these are much less
performance-critical and will not be discussed in detail as this would go beyond
the scope of this paper.

3.4 Results

In this subsection AMAIX parameterized for the NVDLA as shown in the pre-
vious subsection is used to predict inference performance for the AlexNet and
LeNet CNNs. The results are compared to the inference performance measured
on the hybrid prototype introduced in subsection 3.2. The non-cycle accurate
SystemC-TLM model was used for measuring the exchanged data amounts with
the main memory while the cycle accurate Verilog model was used to measure
the time a layer needs for its execution. In addition, the NVDLA performance
estimator spreadsheet provided by Nvidia was used for comparison [1].

The standard KMD, UMD and NVDLA compiler in basic mode were used
(version: July 2019) to execute the following measurements. As of September
2019 the compiler also supports several optimization options, which were not
available for our experiments. All KMD debug output was removed for the RTL
measurements, as it turned out to reduce performance significantly.
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Table 1. Results of LeNet. In all cases the bias is dominated by the corresponding
convolutional/fully connected layer.

Layer tlayer,am tlayer,hyb tlayer,ps bound dweight difmap dofmap nops

Unit µs µs µs {c,m} B B B operations

conv1 28.8 28.9 7.2 c 1,024 25,088 0 29,491,200
(bias) 0 0 0 - 64 0 36,864 18,432
pool1 4.61 4.61 0 c 0 36,864 9,216 18,432
conv2 6.40 6.93 3.2 c 50,048 9,216 0 6,553,600
(bias) 0 0 0 - 128 0 8,192 4,096
pool2 1.02 1.06 0 c 0 8,192 2,048 4,096
fc3 12.5 12.97 15.67 m 800,000 2,048 0 8,388,608
(bias) 0 0 0 - 1,024 0 1,024 512
relu3 0.03 0.08 0 c/m 0 1,024 1,024 128
fc4 0.18 0.37 0.17 m 10,112 1,024 0 131,072
(bias) 0 0 0 - 64 0 64 32
softmax 0 0 0 - 0 0 0 0
idle 0 20.52 0 - 0 0 0 0

Total 53.9 54.92+20.52 26.2 - 862,464 83,712 58,432 44,610,208

As a first example the results of LeNet shall be analyzed which are depicted
in Table 1. A corresponding roofline graph can be found in Fig. 6. The follow-
ing parameters are shown in the table: execution time of a layer according to
AMAIX (tlayer,am), the hybrid prototype (tlayer,hyb) and the NVDLA perfor-
mance sheet (tlayer,ps). Furthermore, the boundary (either memory or compute
bound), data exchanged with main memory (dweight, difmap, dofmap) and num-
ber of operations (nops) are also displayed. The amount of data refers to both
simulation and analytical model, since the model predicted this 100% accurately.
The number of operations refers only to the analytical model. Layers which are
pipelined and not dominant are enclosed in brackets. The execution time of a
layer is defined as the time between setting the kick-off register and raising the
interrupt flag. The results show that for the total inference time the analytical
model predicts the measured inference time of 54.9 µs with 53.9 µs or 98% ac-
curacy. The model deviates from the measurements in some layers, especially
in small layers. Several reasons for this were discovered during analysis. Firstly,
the individual subprocessors such as the SDP also have internal pipelines which
need a certain number of cycles to be filled. Furthermore, a certain amount of
data must be available before the execution of operations can be started with.
This is a deviation from the perfect parallelism which is assumed by the roofline
model. Therefore, the analytical model underestimates the execution time.

The time obtained from the NVDLA performance sheet overestimated the
performance of the NVDLA by more than 2x. This is due to the performance
sheet assuming optimizations like layer pipelining or Winograd convolution which
were not implemented in the NVDLA compiler at the time the performance sheet
was released. Due to the lack of configurability, the result given by the perfor-
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Fig. 6. Applying a roofline graph on the obtained results of LeNet.

mance sheet could not be improved further. Some aspects like ifmap tiling or
bias layers are completely omitted, which further deteriorates its accuracy.

Fig. 7 shows an activity trace of LeNet on the hybrid prototype. The ”idle”
parts represents phases in which the NVDLA waits for further instructions from
the driver. These times have already been greatly reduced by the previously
mentioned modifications of the KMD, but are still significant. One reason for

start endMeasured (System): 75.4µs

NVDLA 
host

ReLU pooling idleconvolution

LeNet fp16 @1GHz, 64GB/s

Measured (NVDLA): 54.9µs

Fig. 7. Activity trace of LeNet running as a Hybrid Emulation.

this is that LeNet is a very small example for today’s standards. As the results
show, the NVDLA can process most layers within a few hundred cycles or less.
This leads to the hardware being faster than the driver.

Therefore, the results of the larger and more recent AlexNet are analyzed.
These are shown in Table 2. Again, the analytical model was able to predict the
amount of data required 100% accurately. The total inference time of 6.1 ms was
accurately predicted to about 88% with an estimate of 5.4 ms. The performance
sheet overestimated the performance of the NVDLA again with 2.3 ms by a factor
of 2.7x.



P
R

E
P

R
IN

T
-

p
u
b
li
sh

ed
in

S
A

M
O

S
2
0
2
0
,

d
o
i:

1
0
.1

0
0
7
/
9
7
8
-3

-0
3
0
-6

0
9
3
9
-9 14 L. Jünger et al.

Table 2. Results of AlexNet. In all cases the bias is dominated by the corresponding
convolutional/fully connected layer.

Layer tlayer,am tlayer,hyb tlayer,ps bound dweight difmap dofmap nops

Unit µs µs µs {c,m} B B B operations

conv1-1 479.2 497.2 102.9 c 69,760 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-2 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-3 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-4 479.2 497.2 0 c 0 423,168 0 490,659,840
(bias) 0 0 0 - 192 0 129,024 63,360
conv1-5 279.5 279.5 0 c 0 255,360 0 286,218,240
(bias) 0 0 0 - 192 0 75,264 36,960
relu1 18.5 18.2 0 c/m 0 591,360 591,360 290,400
norm1 72.6 79.3 0 c 0 654,720 654,720 290,400
pool1 72.6 72.6 0 c 0 591,360 145,152 290,400
conv2 583.2 588 218.7 c 614,400 145,152 0 597,196,800
(bias) 0 0 0 - 512 0 387,072 186,624
relu2 12.1 11.7 0 c/m 0 387,072 387,072 186,624
norm2 46.7 50.8 0 c 0 428,544 897,536 186,624
pool2 46.7 46.7 0 c 0 387,072 93,184 186,624
conv3 146.0 149.6 64.9 c 1,769,472 93,184 0 149,520,384
(bias) 0 0 0 - 768 0 139,776 64,896
relu3 4.4 4.1 0 c/m 0 139,776 139,776 64,896
conv4 219 224.4 48.7 c 1,327,104 139,776 0 224,280,576
(bias) 0 0 0 - 768 0 139,776 64,896
relu4 4.4 4.1 0 c/m 0 139,776 139,776 64,896
conv5 146 151.4 32.4 c 884,736 139,776 0 149,520,384
(bias) 0 0 0 - 512 0 93,184 43,264
relu5 2.9 2.7 0 c/m 0 93,184 93,184 43,264
pool5 10.8 10.8 0 c 0 93,184 18,432 43,264
fc6 1180.2 1792.6 1152.4 m 75,497,472 18,432 0 603,979,776
(bias) 0 0 0 - 8,192 0 8,192 4,096
relu6 0.3 0.3 0 c/m 0 8,192 8,192 4,096
fc7 524.7 525.5 512.3 m 33,554,432 8,192 0 268,435,456
(bias) 0 0 0 - 8,192 0 8,192 4,096
relu7 0.3 0.3 0 c/m 0 8,192 8,192 4,096
fc8 128.2 128.8 125.2 m 8,192,000 8,192 0 66,060,288
(bias) 0 0 0 - 2,048 0 2,048 1,008
softmax 0 0 0 - 0 0 0 0

Total 5415.5 6124.4 2257.4 - 121, 9 · 106 6 · 106 4.6 · 106 4.3 · 109

The largest deviation of the analytical model is found in layer ”fc6”. The
analysis of this layer showed that the size of the required data causes the com-
piler to switch the convolution buffer to work in a single buffer mode, so that
convolution and memory transfers no longer run in parallel. This effect can also
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be modeled by dividing a layer into a compute task and a memory task. With
this simple extension the analytical model predicts 6005.4 µs which is 98% ac-
curate. However, this results in operational intensities of 0 or infinity which is
difficult to represent in the roofline graph.

3.5 Design Space Exploration

Since the simulation results have shown that AMAIX allows precise predictions
to be made, it will be used to explore the NVDLA’s design space in this section.
The NVDLA has over 30 different hardware parameters that can be individu-
ally set to provide a suitable configuration for each application. Some of these
parameters are also found in the analytical model. For example, the width and
depth (Tc (depth) and Tk (width)) of CONV CORE’s MAC unit. The performance of
AlexNet in frames per second is shown regarding these parameters in Fig. 8. The
tuples (width, depth) are chosen such that their product is constant, which corre-
sponds to a constant area. The analysis shows that besides the full configuration
of the NVDLA there are other configurations that theoretically allow a faster
execution of AlexNet. However, with a convolution buffer size of 512 KiB the
design space is limited to the highlighted area of the graphs. Thus the NVDLA
full configuration seems to be optimal for AlexNet given the convolution buffer
constraint. This result cannot be verified using the NVDLA. Although the hard-

Fig. 8. Design space exploration of the Convolution Core using AlexNet.

ware synthesis of the NVDLA configurations is possible, the drivers so far only
support the full, large and small NVDLA configuration.
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4 Conclusions

In this paper the novel AMAIX aprroach for the inference performance estima-
tion of DLAs was proposed and evaluated. AMAIX’s design allows for generic
representation of DLAs, due to its configurable scaling factors. Its per layer
modeling approach is a reasonable compromise between model complexity and
accuracy as shown in the detailed case study. For the NVDLA, the model pre-
dicted the inference time with an accuracy of 88% for AlexNet and 98% for
LeNet compared to an accurate RTL emulation. In addition it was shown, that
AMAIX can be used for design space exploration, especially since it can be eval-
uated several orders of magnitude faster than a Verilog or SystemC simulation.

In future work, it would be interesting to apply AMAIX to other DLA archi-
tectures. Another possible application are compiler optimizations. For example,
an analytical model can help to simplify the decision between Winograd con-
volution and standard convolution. While Winograd convolution can usually be
calculated much faster, it still requires more weight data. It should therefore
only be used if the system is compute bound. The analytical model can also be
used to characterize architecture-level simulation models of DLAs in order to
evaluate their impact on the interconnect and memory subsystem.
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