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ABSTRACT
In this work a Virtual Platform (VP) is presented containing a novel
processor model for the latest ARMv8 instruction set architecture.
This processor model was constructed using the Unicorn emula-
tor [6]. The necessary modifications to the Unicorn emulator and
subsequent performance improvements during SystemC simulation
are shown in detail. In addition the integration into a VP using a
state-of-the-art SystemC modeling library is described. A compari-
son is made with a VP containing another similar processor model,
highlighting the benefits of using Unicorn for processor modeling
in a SystemC environment.

CCS CONCEPTS
• Hardware → Hardware-software codesign; • Computing
methodologies → Discrete-event simulation;
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1 INTRODUCTION
In the fast-paced development cycles of today, Virtual Platforms
(VPs) have become an essential tool in embedded software devel-
opment. VPs are typically available long before their hardware
counterparts, allowing to start software development earlier. They
enable hardware/software co-design, since insights gained from
early software development can be of use to the hardware design-
ers. Even though VPs do not model every detail of real hardware,
having more time for software development and testing yields more
mature and stable software. This, in turn, speeds up the bringup on
the physical hardware of the final product once it is available.
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Figure 1: Overview of example VP

SystemC Transaction-Level Modeling 2.0 [5] (TLM) has become
the de facto standard for constructing VPs. It allows for the VP to be
described using C++, which is then compiled into a fast simulation
executable. Because the VP is a C++ program, it can be inspected
using off-the-shelf C++ debuggers and other analysis tools. Hence,
VPs offer a high degree of introspection, making them ideal for
debugging, and their malleability and interoperability allows users
to customize them to their needs. An overview of an exemplary VP
intended for software development is given in Figure 1. It consists
of a processor model with debugger integration, memory and an
Input/Output (I/O) device, which is connected to host I/O.

Ideally, there should be no discernible difference between using
a VP or physical hardware from the point-of-view of the software
developer. Notably, it should react to inputs as quickly as physical
hardware. Therefore, rapid simulation is a key productivity feature
of a VP. A VP usually consists of multiple component models such
as processors, buses, memories and peripherals. Since all of these
components are simulated, they have an effect on the overall simu-
lation performance. The processor model is a core component of
the VP and normally contains an Instruction Set Simulator (ISS)
for the simulated target Instruction Set Architecture (ISA). During
simulation a substantial amount of execution time is spent in the
ISS of the processor model. Therefore, a high performance ISS is
paramount to achieving rapid simulation speed, yielding smooth
VP operation in conventional software development environments.

In this work, a TLM processor model using the open-source
Unicorn emulator [6] is introduced. ARMv8 was selected as the
target ISA, because it is the most common 64-bit embedded systems
ISA. This processor model was subsequently used to construct a
full VP. Different benchmarks were evaluated on the VP to assess
the performance of the Unicorn-based processor model.
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The remainder of this work is structured as follows. In Section 2,
work related to the topic is surveyed and summarized. Afterwards,
Section 3 describes the Unicorn TLM wrapper and GNU Debugger
(GDB) integration. The VP, that was built using the new Unicorn-
based processor model, is described in Section 4. An experimental
evaluation of the VP with industry-standard benchmarks is given
in Section 5. Finally, a conclusion is drawn in Section 6.

The contributions of this work are:

• Design of a novel ARMv8 SystemC processor model using
the Unicorn emulator

• A new instruction counting mechanism for the Unicorn em-
ulator, suitable for rapid SystemC simulation

• Construction of a realistic VP using the novel processor
model

• Assessment of the performance of the Unicorn-based VP in
comparison with a similar state-of-the-art VP

2 RELATEDWORK
Generally, an ISS is needed when building a processor model from
scratch. ARMoffers commercial processormodels, that are equipped
with a SystemC interface: the ARM FastModels [1]. Besides the Sys-
temC interface, these models offer different debug and scripting
Application Programming Interfaces (APIs).

Another option is the open-source QEMU system emulator [2].
QEMU contains a Dynamic Binary Translation (DBT) ISS compo-
nent for many different ISAs.

The main idea of DBT is to translate binary instructions from
the target to the host instruction set at runtime. QEMU also stores
and then re-uses the translated instructions. This way, the target
instruction fetch and decode is only executed once as opposed to an
interpreting ISS. Different optimization techniques can be applied
to speed up the DBT process. QEMU is not a stand-alone proces-
sor model. It also includes models of other hardware components,
including, but not limited to, graphics card, sound card, USB con-
trollers and memory controllers. By combining these components,
QEMU is capable of simulating a complete system. In addition, it
includes a GDB server, which allows the user to connect a GDB
instance to debug the software running on the simulated system.
However, QEMU does not have a SystemC interface and is geared
towards full system emulation. It is not usable in a VP by itself,
since it lacks the customizability and interoperability of SystemC.

To address the lack of a SystemC interface in QEMU, the QBOX
platform emulation environment by GreenSocs [3] adds a SystemC
wrapper to the emulator. With this, QEMU can be integrated into a
TLM simulation. It also keeps the GDB server intact to enable debug-
ging of the target software. Since QEMU is kept mostly unmodified,
including the hardware component models, there is inherent over-
head if only a processor model is needed in the VP. AMVP [9],
selected as comparison in this work, uses QBOX in its processor
model.

In 2015 Nguyen et al. presented their Unicorn emulator [6]. Uni-
corn is based on the QEMU system emulator version 2.2.1, but it
keeps only a small subset of the functionality of QEMU. The fast
DBT based ISSs are kept, while the other component models are
removed. A lightweight API is provided to use the ISSs. Unicorn
does not include a TLM compatible interface and thus cannot be

Figure 2: Different kinds of memory accesses

used in a SystemC VP without modification. This work proposes a
solution to this problem.

3 EMBEDDING UNICORN IN SYSTEMC
In this work, the Unicorn emulator [6] is used to build a TLM-
compatible ARMv8 processormodel. Since Unicorn does not include
a TLM interface, some modifications are made to the existing code
base. In this section, these modifications are described in more
detail. The Unicorn-based processor model was constructed using
the Virtual Components Modeling Library (VCML) [10]. VCML
provides base classes, that simplify the construction of SystemC
hardware components models. It also includes several complete
SystemC models for assembling a VP, such as memory, bus and
peripheral models.

From the perspective of VCML, Unicorn is a processor model.
As such, mechanisms for memory access, Memory-Mapped I/O
(MMIO) and interrupts had to be designed. These are described in
Section 3.1. In addition, VCML includes a GDB Remote Serial Pro-
tocol (RSP) [7] server implementation, that simplifies the debugger
integration, which is essential for a VP. Without it, the VP lacks
core features for software debugging and development. Therefore,
GDB support was added in the Unicorn-based processor model.
More details on the GDB integration are provided in Section 3.3.
Unicorn is not designed for speed and thus specific performance
enhancements were added. These enhancements are described in
Section 3.4.

3.1 Memory
For this work, two types of memory accesses have to be distin-
guished. The first type is a standard memory access from the pro-
cessor model to the RAMmodel. The second type of memory access
is MMIO, which happens when the processor model accesses a
memory-mapped peripheral e.g. a UART. In the SystemC domain,
these two kinds of accesses have to trigger different behaviors.
When the processor model is accessing the RAM, the access can
be conducted using the TLM Direct Memory Interface (DMI). In
this case the memory access is done directly via a pointer, which is
the fastest method for modeling this kind of behavior. In case the
processor model is accessing a MMIO peripheral model, the mem-
ory access has to be conducted via the TLM Blocking Transport
interface (BT). This is due to the fact, that the peripheral model
usually has to react to the access, e.g., by printing a character on
the screen, and thus needs to be informed of it. The two different
types of memory accesses are depicted in Figure 2.
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Figure 3: External interrupts triggering function
calls to the processor model

Figure 4: Execution flow before and after TB chaining optimiza-
tion

To the processor it is generally unknown whether a memory
access targets the RAM or a MMIO peripheral. The distinction
between the different memory access methods is therefore to be
made by the TLM wrapper. The processor fetches instructions and
data from the RAM via its corresponding data and instruction ports,
which are connected to a bus model. Unicorn includes a mechanism
that allows for mapping host memory directly to the emulator
memory space via a pointer. This mechanism is used for mapping
the RAM model memory to the emulator at the end of the SystemC
elaboration phase. After the RAM is mapped, program execution
can start.

Unicorn allows to connect callback functions to different mem-
ory events, such as an unmapped memory access. This callback
function is executed when an instruction accesses memory that is
not mapped in the address space of the emulator. When this hap-
pens, the emulator cannot continue execution and the following
algorithm is executed to resolve the issue:

(1) Try to acquire a DMI pointer and map the missing memory
into the memory space of the emulator.

(2) If a DMI pointer cannot be acquired, a BT is used for the
memory access, and callback functions are registered on the
address to handle the memory access via a BT in the future.

Using the method described above, all memory accesses occur-
ring during the SystemC simulation can be handled.

3.2 Interrupts
ARMv8 processors feature the external IRQ and FIQ interrupt sig-
nals, which have to be included in the processor model to achieve
full compatibility The processor model has to be able to react to
changes in these signals. Unfortunately, the Unicorn API does not
expose the interrupt functionality of the ISS. Therefore, the API
had to be extended to expose this functionality to the TLM wrapper.
Interrupts are modeled as sc_signal<bool>. The processor model
reacts the signal changes by executing an IRQ trigger (uc_irq())
function on rising and falling signal edges. This is depicted in Fig-
ure 3.

Figure 5: Overview of the Unicorn VP

In this IRQ trigger function, the corresponding QEMU function
is called via the extended Unicorn API, initiating the CPU state
changes to reflect the occurrence of the interrupt.

3.3 GNU Debugger Integration
In order to ease the bringup of the target software on the processor
model, a debugger integration is indispensable. The VCML proces-
sor model base class includes an integration of GDB RSP. GDB can
be connected to the running VP remotely via a network connection
and does not need to be executed on the same machine.

For GDB support, the processor model needs to be able to read
and write the emulated processor registers and set and remove
breakpoints. Many of the ARMv8 registers are accessible via the
Unicorn API and the missing ones were added for this work. Break-
point support was added using Unicorn memory callback functions.
When GDB sets a breakpoint on the processor model, a memory
callback is added for the corresponding memory address. Once
execution reaches this address, the VCML GDB server stops execu-
tion and passes control to GDB to resume interactive debugging.
Memory access is provided to GDB by the VCML GDB integration
directly via the TLM data and instruction sockets, and therefore
needs not to be implemented by the processor model.

3.4 Performance Optimization
TLM simulations use temporal decoupling to increase simulation
performance. Following this concept, the processor model is al-
lowed to run ahead of the global simulation time until the next
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synchronization point is reached. The largest amount of time a
thread may differ from the global simulation time is referred to as
the quantum. The size of the quantum corresponds to the amount of
instructions the processor model may execute in between two syn-
chronization points. In order to be able to execute a certain number
of instructions, there needs to be an instruction counter and a way
to exit the emulator when the desired number of instructions was
executed. There are several ways in which the instruction counting
can be implemented. In order to evaluate the different methods,
more detailed knowledge of the Unicorn emulator is required.

As mentioned above Unicorn uses the DBT ISSs from the QEMU
system emulator. The main component of these ISSs is the Tiny
Code Generator (TCG), which handles the DBT. First, the target
ARMv8 instructions are translated into TCG instructions, which
are then optimized and translated to host instructions. The TCG
translates on Translation Block (TB) granularity. A TB is a coherent
block of instructions that can only be entered at its beginning and
exited at its end, e.g., via a branch instruction. To further improve
performance the TCG has a TB cache, that stores previously trans-
lated TBs for later reuse. At the end of a TB, execution can continue
in two places, which correspond to whether the branch at the end
of the TB was taken or not. This is used for an optimization re-
ferred to as TB chaining. When the end of a TB is reached, Unicorn
checks which TB to execute next. It then stores the information on
which TB followed due to which branch decision. When the TB
is executed next time and the same branch decision is made, the
execution directly continues at the correct TB without the need for
another TB lookup. If at this point the other branch option is taken,
this information is also stored together with the subsequent TB and
when the TB is executed again, execution can continue directly for
either branch decision. This optimization is depicted in Figure 4.

Unicorn implements instruction counting by branching to a
counting routine after every instruction. This counting routine also
checks whether execution should stop, in case the desired number
of instructions was executed. Since Unicorn allows stopping execu-
tion at any address, the TB cache has to be flushed regularly. This
is necessary, because Unicorn can also stop and continue execution
somewhere inside a TB and not only at the beginning and end.
In this case, at least the corresponding TB has to be re-translated.
However, Unicorns default behavior is to flush the entire TB cache.
When a precise instruction count is not needed, this behavior in-
troduces considerable performance overhead, since it effectively
degrades the TCG to an interpreter. In a TLM simulation a small
TLM quantum overshoot is acceptable, meaning that execution can
always continue until the end of the TB is reached. Therefore, it is
sufficient to only count instructions on the TB level. This can be
done efficiently by adding host machine instructions at the begin-
ning of the TB to increase an instruction counter in host memory
by the number of instructions in this TB. This also works when
TBs are chained. Branching to a counting routine is not necessary.
For this work, an instruction counting mechanism per TB, as de-
scribed above, was added to the Unicorn emulator. The performance
difference between the two methods is shown in Section 5.

The default behavior of Unicorn is still useful for debugging,
where single instruction steps are common. Thus, the default be-
havior is enabled in the processor model when the debugger issues
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Figure 6: Benchmark results for Dhrystone and CoreMark
on the Unicorn VP

a single instructions step. When the debugger issues a continue
command, the faster instruction counting mode is re-enabled.

4 THE UNICORN VIRTUAL PLATFORM
The Unicorn-based SystemC processor model, described in Sec-
tion 3, was used to build a VP for experimental evaluation. This VP
is described in this section. Figure 5 shows a platform overview of
the complete VP.

Besides the processor model, the VP contains the following com-
ponents:

• A generic bus model
• An ARM GICv2 interrupt controller model
• A generic memory model
• A Real-Time Clock (RTC) model
• A PL011 ARM PrimeCell UART peripheral model

All components besides the RTC are part of the VCML [10]. The RTC
was implemented for this work. It is used to provide a reference time
to the benchmark target software. The target software is copied to
the memory before the SystemC simulation starts.

5 EXPERIMENTAL EVALUATION
To evaluate the performance of the processor model, described in
Section 3, different benchmarks were executed on the Unicorn VP,
introduced in Section 4. CoreMark [4] and Dhrystone [8] were
ported to the VP as industry-standard benchmarks. The following
results were acquired on an octa-core Intel i7-7700 host system
with 32GB RAM, running CentOS 7.3.1611. Each experiment was
repeated ten times and the results were averaged for the final result.

First, the CoreMark and Dhrystone benchmarks were executed
on the Unicorn VP with set SystemC quanta of 10 µs and 100 µs.
The processor model performance was measured in Million simu-
lated Instructions Per wall clock Second (MIPS) using the profiling
facilities of the VCML. The results are summarized in Figure 6.

It can be observed, that the CoreMark benchmark executes faster
than the Dhrystone benchmark. This is likely caused by the fact,
that Dhrystone is more memory intensive and the processor model
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Figure 7: Benchmark results for Dhrystone on the
Unicorn VP with TB and instruction granularity
counting
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Figure 8: Benchmark results for Dhrystone on the QBOX and
Unicorn VPs

has to leave the ISS more frequently to access the memory, which
is costly.

As described in Section 3.4, the performance of Unicorn in a
SystemC VP was improved by adding a novel instruction counting
mechanism. The performance improvement was experimentally
evaluated with the Dhrystone benchmark, which was executed on
the Unicorn VP with the proposed TB-granularity and the orig-
inal instruction granularity counting mechanism. The MIPS per-
formance of the processor model was measured using the VCML
profiling facilities. The results are visualized in Figure 7. Here it
can be observed, that a significant performance improvement was
achieved. However, one has to keep in mind that this comes at
the cost of accuracy, since now TLM quantum overshoots must be
tolerated. However, in a loosely-timed simulation this is generally
not a problem.

In order to assess the processor model performance in compari-
son with similar models, a comparison with a single-core, sequen-
tial version of the QBOX-based [3] AMVP [9] was performed. The
Dhrystone benchmark was executed on both VPs with two different
TLM quanta of 10 µs and 100 µs. As before, the MIPS performance
was measured using the VCML profiling facilities in both VPs. The
results are summarized in Figure 8.

The Unicorn VP outperformed AMVP in both settings. It can be
observed, that Unicorn was significantly faster than AMVP for the
10 µs quantum. From this it can be deduced, that the overhead of en-
tering and leaving the QBOX emulator dominates the performance
difference. For the 10 µs quantum the ISS has to be paused and
resumed more often, which is why the lightweight Unicorn-based
processor model is significantly faster here. With a higher quantum,
more time is spent inside the ISS. Since Unicorn and QBOX both use
the QEMU TCG, the performance difference is not as significant.
6 CONCLUSION
This work shows, that Unicorn is a promising candidate for use as
a TLM processor model. The missing TLM wrapper can be imple-
mented using Unicorn callback functions and minor extensions to

the Unicorn API. A big advantage is, that Unicorn is lightweight and
only includes what is absolutely necessary for processor emulation.
It keeps the QEMU DBT ISS with TCG and with some modifica-
tions can be brought to rapid simulation speed. The performance
of the constructed VP is sufficient for interactive debug and higher
than comparable VPs. When the VP is used as a debug target, no
difference is observable between the VP and physical hardware.
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