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Abstract—Using FPGAs to accelerate Virtual Platforms (VPs)
has bent the rule within simulation community that you cannot
have both accuracy and speed. Having the ability to run a VP
at considerable speed, and being sure that the critical IP in
question is being emulated totally accurately opens up the scope
of functional verification to include the full software stack. Only
hitherto this has typically been limited to very specialized and
expensive emulators that are often difficult to scale. Being able to
make use of this technology in a fashion conducive to continuous
integration and test would be a game changer in many embedded
systems groups.

Recently this has become more possible, due to several
developments: First, Amazon has made available their FPGA-
enabled cloud instances. They are not the only ones to go this
route, and using FPGA cards within an in-house server farm is
also becoming feasible. Second, the technology needed to make
use of these devices within the context of standard simulation
frameworks is now better understood.

In this work an activity in this domain is presented: the
SytHIL framework. Using SytHIL RTL descriptions emulated
on FPGAs, SystemC TLM models and QEMU models can be
combined into one unified simulation. This allows to accurately
emulate hardware IPs such as processors or accelerators on the
FPGA while other system components are executed at rapid speed
as simulation models. Through the SystemC layer, the SytHIL
simulation can also be connected to the physical world or other
simulated environments. In our case study, we demonstrate the
capabilities of SytHIL by emulating different RISC-V processors
on Amazon FPGA-enabled cloud instances in combination with
SystemC TLM and QEMU models via which the simulation is
connected to the host network and thus to the internet.

I. INTRODUCTION

Over the past decades, the complexity of HW/SW systems
has been steadily increasing. Also, embedded systems have
become ubiquitous in our every day life in many application.
To verify the correct functionality of everything from planes to
disc-drives early in the design cycle, full system simulators,
so called Virtual Platforms (VPs), are the de facto standard
tool.

While VPs are mainly used for functional software ver-
ification, the Register Transfer Level (RTL) description of
the components is usually verified using either RTL simula-
tion within complex test benches, Field Programmable Gate
Array (FPGA) emulation using special hardware or FPGA
prototyping. The advantage of RTL simulation is that it is,
by construction, entirely faithful to the design, not only in

Fig. 1. Overview of the SytHIL framework.

functionality but in measured performance. However, typical
RTL simulators are many orders of magnitude slower than is
required for typical software development or reasonable func-
tional verification. Emulation using special hardware or FPGA
prototyping bridges this gap by enabling the RTL description
to be executed at near real-time speeds. While this seems to be
an ideal solution, there are two main problems: The availability
of the RTL description itself early in the design cycle, and
the availability of the FPGA hardware on which to execute
the RTL. To this end, standard VP modeling techniques
are typically deployed using languages such as SystemC to
implement a model of the proposed design, sufficient for the
needs of functional verification. But again, this solution is not
without its difficulties. Models are often complex to construct,
or may not run as fast as the functional verification engineers
would like. Hence, often a hybrid approach is preferred, re-
using elements of available RTL designs while also using
some standard simulation models of components. The degree
of flexibility with which different model components can be
used in such an environment is critical, but equally important
is the availability of the FPGA hardware that will be used.

This work aims to unite the software and hardware testing
strategies into a hybrid approach. It uses the IEEE standard
language for VPs: SystemC TLM 2.0, the ubiquitous open-
source hypervisor/emulator QEMU [17], and FPGAs. Specif-
ically, and critically, the FPGAs used are available in the
cloud using the Amazon Web Services (AWS). This means



Paper Goal Emulation Simulation type Synchronization Flow SCE-MI
SytHIL Func. hardware & software verification FPGA SytemC Transaction only both No
[1] Hardware verification Emulator C-Program Clock control sw→hw No
[2] Func. co-verification FPGA C-Program / ISS Transaction only sw→hw No
[3] Func. hardware & software verification FPGA SytemC Cycle accurate hw→sw No
[4] Hardware verification FPGA C-Program Transaction only sw→hw No
[5] Func. hardware verification FPGA C-Program / ISS Transaction only sw→hw Yes
[6] Mixed-signal hardware verification FPGA Any HLA Clock control both No
[7] Hardware verification HDL simulation C++ Program Transaction only sw→hw No
[8] Hardware verification FPGA C-Program Transaction only sw→hw No
[9] Hardware verification FPGA SytemC Clock control sw→hw Yes
[10] Algorithm verification co-design FPGA C model/ISS Transaction only sw→hw No
[11] Co-design HDL simulation ISS Clock control both No
[12] Hardware & Software verification FPGA C/C++ code Clock control sw→hw No
[13] Functional verification phy. hardware C-Code Transaction only sw→hw No
[14] Simulation speed up FPGA Simple Scalar Transaction only sw→hw No
[15] Hardware verification FPGA C-Program Transaction only sw→hw No
[16] Hardware & Software verification FPGA C++ Program Clock control hw→sw No

Fig. 2. SytHIL comparison with related work.

that the methodology can be deployed at low cost, and scaled
to cover the needs of large teams without the need to buy
dedicated hardware. The integrated methodology that has been
developed in this work, which allows model components from
each of these three environments to work together, will be
referred to as the System Level Hardware-in-the-Loop (SytHIL)
framework.

The diagram in Fig. I aims to give an overview of the
technology. At the top, a VP is shown consisting of differ-
ent components, such as a CPU, a video card, an Ethernet
MAC, memory and an UART. With SytHIL this VP can be
partitioned into parts for execution inside the QEMU domain,
the SystemC domain or the FPGA domain. The components
are mapped onto these supports. Also, both the SystemC and
FPGA environment themselves are hosted within SystemC.
The FPGA environment is represented at the edge of the
SystemC environment, as there are certain aspects of the
FPGA which are not handled within SystemC, and physically
the FPGA allows to interface to the real world. The diagram
also shows a memory element that is shared between SystemC
and the FPGA domain, the extent to which this is implemented
will be examined further in this paper, as it is a critical feature
which improves simulation speed. Finally, SystemC provides
a view of the world to the simulation environment as SystemC
is in control of the notion of time, and inputs/outputs to and
from the VP. The purpose of the SytHIL framework is to
enable all of this partitioning to be carried out as simply as
possible, while all the necessary transactors and adapters are
deployed under the hood within the framework.

II. RELATED WORK

Functional hardware-software-co-verification was first pro-
posed in 1998 in [13]. In that paper the emphasis is put on
running software in the physical target environment. To do
that, a functional software simulator is augmented with an
FPGA that can interact with physical devices. The simulator
can run target software and the interactions with the outside
world are handled by the FPGA by toggling the respective
pins. The exact mechanism that allows the transfer of data

from the software simulation to the hardware simulation is the
core technology in all of the hardware-software-co-verification
approaches and will be categorized in the following. Shortly
after the first paper, [7] introduced a transaction based scheme
which increases abstraction by only keeping track of logical
transaction information, e.g. address and data to be transferred.
Compared to the older approach, where every logical level of
the physical bus had to be accounted for, the new approach
can increase throughput significantly. [7] also shifted the focus
from functional verification to hardware verification. This
means that the C simulation was used to write an abstract
test bench that would have previously been written in an
Hardware Description Language (HDL). This allowed greater
productivity for the engineers and re-usability was increased
since the test bench could be used for both a software and
an RTL model of the design. Since then most research effort
has been focused on the transaction based approach because
of the increased simulation performance. Several papers im-
proved the general mechanism in various ways like improved
abstraction [1], addition of mixed-signal simulations [6] or
exploration of the communication architecture [3] [9]. All
these approaches rely on clock cycle accurate synchronization
between the simulation and the FPGA which restricts the
overall simulation performance.

A popular approach to increase simulation performance is
to relax the timing synchronization between the software and
the hardware simulation. A simple way to implement this idea
is to omit explicit alignment of timing information and only
rely on stalling while one part of the simulation depends on
the other. To illustrate this concept, imagine a VP with an
Instruction Set Simulator (ISS) executing target software and
an FPGA attached in some way. Assume the FPGA contains
the RTL description of a peripheral that will at some point
be accessed by the target software. From the point of view
of the target software it will just access a memory mapped
register. At this point the software simulation will be stalled
until the interaction with the FPGA is completed. The ISS will
get the result of the memory access as if no time had passed.



The gain in simulation performance lies in the fact that while
the FPGA is calculating the result of the memory access it is
not synchronized with the software simulation. This approach
lets both simulation run at full speed and only stall when they
interact. This approach has been utilized often in literature (
[2], [4], [5], [7], [8], [10], [14], [15]).

Another important distinction in this space is whether or
not the design can handle transactions that are initiated by the
hardware simulation. For now only the case where data bus
masters or bus initiators are in the software simulation was
considered. This is a considerable disadvantage if peripherals
that have a Direct Memory Access (DMA) port or even
whole CPUs are to be verified. The concept of having a
device on the FPGA that can write data back through a
DMA port has been explored in [12] and [11]. [12] describes
a mechanism that allows for data to be transferred in both
directions by synchronizing hardware and software on every
clock cycle. While this approach allows the desired DMA
transfer, it suffers from low simulation performance because
of the synchronization overhead. In [6] and [3] an entire CPU
was instantiated on the FPGA to verify the interplay between
target software and RTL design. [3] ran target software for a
NIOS 2 softcore in a custom scheduler environment and con-
nected SystemC to simulate other peripherals. Cycle accurate
synchronization is taken care of by the scheduler that runs
underneath the target software, which ensures accuracy but
incurs a performance penalty as mentioned previously. The
authors of [6] rely on the HLA/RTI standard to connect all
simulations which implement it. The FPGA is connected by
controlling the Design Under Test (DUT) with a debugging
subsystem and a software layer that implements the required
HLA/RTI interfaces. This approach is also cycle accurate. A
different angle is approached by [16], which puts emphasis
on CPU design and architecture exploration. In their paper
the RTL description of the CPU is transformed in a way
that allows fine grained control of the hardware simulation
while every module’s clock is decoupled. They also provide
software adapters that transfer the logic level of peripheral
outputs to their software simulation. There is also the Accelera
Standard Co-Emulation Modeling Interface (SCE-MI) which
standardizes a modeling interface that is supposed to enable
transactor models to be easily migrated from simulation to
emulation [18]. Few of the mentioned approaches implement
this standard.

With SytHIL we propose a framework that allows the
connection of all types of peripherals and CPUs in whichever
domain, hardware or software simulation, in a transaction
based and decoupled manner. Fig. 2 provides a table which
gives a comparison of our work and previous publications.

III. THE SYTHIL FRAMEWORK

Our framework consists of two major parts, first the QEMU
integration into SystemC and second the SystemC-FPGA
integration. The QEMU domain is handled using GreenSocs’s
Qbox [19]. This allows wrapping QEMU CPUs into Sys-
temC modules that have standard Transaction Level Modeling

(TLM) ports that connect to the rest of the system. It also
allows non-CPU QEMU devices to be wrapped and similarly
exposed as SystemC modules so that it is possible to reuse
all the devices that QEMU provides. For the FPGA-SystemC
integration Xilinx’s libsystemctlm-soc library was extended
[20]. There are two types of connections, one to transfer
SystemC initiator requests to the FPGA and the other to
transfer RTL initiator requests from the FPGA to SystemC.
The main difference between the two is in which domain
the transaction initiator lies. The basic structure of both
connections is similar, there is an RTL part, which is called
the RTL bridge, and a software module interacting with it.
The RTL bridge is connected to the user RTL design on the
FPGA and the SystemC module, that acts as a user space
driver for the RTL bridge, provides a TLM interface to it. In
principle, the RTL bridge acts as a mailbox that the initiator
side can write into and the target side will read out of, once
it is ready or as soon as all relevant information has arrived.
The RTL bridge also supports the forwarding of interrupts in
both directions.

Xilinx’s library supports the RTL design to be simulated
in software with Verilator or to run it on an FPGA that
is connected via Peripheral Component Interconnect Express
(PCIe) port. To also support different bus protocols in the
RTL design, such as AXI, ACE, and CHI, the software has to
account for protocol-specific parameters. The back-end and the
protocol-specific configuration are encapsulated in different
modules to increase abstraction. The same back-end is used
in both connection directions. An overview of the general
architecture can be seen in Fig. 3. Notice that the AWS shell is
specific to the AWS setup and facilitates the conversion from
PCIe to AXI. In non-AWS setups this block can be substituted
by Xilinx’s PCIe to AXI converter which does not pose any
issues since no other features of the AWS shell are being used.
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Fig. 3. FPGA to SystemC transaction state machine.

As an example the following paragraph will explain the
sequence of a transaction from a functional point of view. To
simplify the explanation details of the back-end interactions
are neglected. The steps involved in a SystemC to FPGA trans-
action are depicted in Fig. 4. Generally, the transaction starts
with a SystemC initiator that calls the b transport function.
The meta information of the transaction is programmed into
the memory mapped registers of the RTL bridge on the FPGA.
Once all information arrives, the RTL bridge carries out the
AXI transaction according to the configuration and makes the
result available in its registers. The software counterpart reads
the results, converts them to a TLM payload, and returns them
to the TLM initiator.

The FPGA to SystemC transaction works very similarly but
is initiated on the FPGA. When a transaction arrives at the RTL
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bridge, it notifies the SystemC module. This modules reads
the transaction information from the RTL bridge registers and
carries out the respective TLM transaction. The results are
again written to the RTL bridge registers. This is shown in
Fig. 5.

To increase the throughput of the SystemC to FPGA con-
nection a mechanism that can optionally bypass all transaction
related modules was implemented. The idea is to give the
initiator module direct access to the FPGA through a memory
pointer that is mapped to the FPGA. All accesses to that
pointer result in AXI accesses on the FPGA. This pointer
is initialized by the back-end by interacting with an AWS
specific library and is then passed on to the initiator by using
SystemC’s Direct Memory Interface (DMI) mechanism. On
the FPGA, Xilinx AXI interconnects are used to create two
paths to the RTL peripheral. The first goes through the RTL
bridge as before, while the second one bypasses the RTL
bridge and directly connects to the target RTL module. A
graphical representation of this setup is shown in Fig. 6. Since

CPU FPGA- 
Bridge

AWS 
Shell

RTL 
bridge

FPGASystemC

Periph

Direct Memory Interface (DMI)

Fig. 6. AWS DMI setup.

the RTL bridges are still in the memory space the RTL target
peripheral needs to be mapped in a special address range.
The driving software expects the RTL bridges to occupy the
first addresses up to 0x20 0000 which means the peripheral
address needs to be bigger than that.

IV. RESULTS

In this section, an overview of the experimental evaluation
results is presented. An AWS f1.2xlarge instance was used as

the simulation host for all benchmarks. An overview of its
technical specification is provided in Table I.

First the speed of data movement between the FPGA
and the SystemC framework was evaluated using different
methodologies to identify the performance bottlenecks and
boundaries. In the first experiment, a VP consisting of a RISC-
V QEMU instance, a SystemC UART model and a memory
is partitioned using our SytHIL framework. QEMU and the
SystemC UART model are executed on the simulation host,
while the memory is placed on the FPGA and connected
using SytHIL transactors. Linux is booted on the RISC-V
core running on QEMU. A benchmark program is executed in
the RISC-V Linux that reads and writes data to the memory
located in the FPGA.

Transfer throughput is measured against wall-clock time.
A second partitioning in which the memory is placed in the
SystemC domain instead of the FPGA is used for comparison.
Two different methodologies for the connection between the
host and the FPGA were evaluated. In the first, which is the
standard approach used by e.g. [20], data is transferred via a
system of letterboxes and interrupts using SystemC’s blocking
transport interface (b transport). Note that both read and write
operations require signaling from SystemC to the FPGA and
back. Even in the case of a write transaction, the return path
is used to indicate the completion and success or failure
of the operation. In the second approach, which has been
implemented in SytHIL, a bridge between the PCIe interface
and the AXI internal bus fabric on the FPGA is used. This is
implemented using the previously described DMI mechanism,

TABLE I
F1.2XLARGE INSTANCE SPECIFICATION.

CPU Intel Xeon E5-2686 v4 (8 vCPUs)
RAM 122 GB
OS CentOS 7
FPGA 1 Xilinx Virtex UltraScale+ VU9P
Price 1.65 USD/h
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which is part of the SystemC TLM2.0 standard, and also
supported by the QEMU-based CPU model. The measured
values are summarized in Table II. While the initial ’NON
DMI’-based approach is slower than the standard SystemC
TLM2.0 ’b transport’ methodology, the DMI approach is 1
order of magnitude faster. The difference between the non-
DMI and DMI approaches is stark. This improvement in
bandwidth enables SytHIL to offer a more flexible distribution
of components between the FPGA and SystemC environment,
and it does so with no loss of simulation quality. However,
when executing in ’NON DMI’ mode, all accesses to memory
from the FPGA domain can be traced, while this is not
possible in ’DMI’ mode. In terms of the DMI approach, it
can be observed that writes to the FPGA memory are 4.4x
faster than reads. This is a property of the PCIe and DRAM
memory system itself. Even though the improvements are
considerable, a pure SystemC platform outperforms the FPGA
mechanism by a factor of 18-154 depending on the access type
as moving data to and from the FPGA incurs an unavoidable
overhead. One has to keep in mind that DMI is mostly used
for memory accesses while SytHIL can perform DMI accesses
to peripherals that update their state between transactions.

Next, the results of a more complex benchmarks are exam-
ined, specifically looking at the flexibility that the framework
gives to place CPUs on the FPGA. In this case Linux boot
time is used as a measure of the simulation performance. The
first case consists of a VP containing a Rocket core [21]
RISC-V CPU and a memory, both placed on the FPGA,
and an UART in the SystemC domain, all connected using
SytHIL transactors. In the second benchmark the Rocket core

TABLE II
BANDWIDTH BENCHMARK RESULTS

Configuration Result
QEMU & FPGA memory
NON DMI

67.1 kB/s (read/write perf.)

QEMU & FPGA memory
DMI

3.796 MB/s (Read perf.)
16.6 MB/s(Write perf.)

QEMU & SystemC
memory (b transport)

0.097 MB/s(Read perf.)
0.097 MB/s(Write perf.)

SystemC memory (DMI) 276.2 MB/s(Read perf.)
276.2 MB/s(Write perf.)

was replaced with the BOOM core [22] highlighting the
adaptability of the framework. In both cases Linux boot time
was measured. Results are shown in Table III, which indicates
the boot time for the BOOM core is marginally faster than that
of the Rocket core. These preliminary result of approximately
20 s compare favourably with those found by [16] who report
equivalent BOOM core boot times of 3.68 minutes. It has to
be taken into account that their FPGA platform (ZC706) can
only run an unmodified BOOM core at 50 MHz while the
AWS FPGA runs at 125 MHz.

TABLE III
LINUX BOOT BENCHMARK RESULTS

Configuration Result
RocketCore VP 19.0 s (Linux boot time)
BOOM core VP 19.14 s (Linux boot time)

To test the framework in a more complex context a network
benchmark was conducted. To make this possible a new
platform was built that has the Rocket core on the FPGA
and a Synopsys DWMAC model in SystemC. The platform
is shown in Fig. 7.

The other components like UART and memory are used
to interact with the platform and boot a Linux kernel that
has device drivers for the DWMAC. After setting up the TAP
interface that is used by the DWMAC model the simulation
can be started and networking can take place between the
host and the Linux running on the FPGA. iPerf3 was used to
measure the network throughput in both transaction directions.
The results are shown in Table IV. The throughput from the
simulation host to the platform amounted to 29.6 kB/s while
the other direction was measured at 9.69 kB/s.

TABLE IV
IPERF3 BENCHMARK RESULTS

Direction Result
Host to Platform 29.6 kB/s
Platform to Host 9.69 kB/s



V. CONCLUSION

In this work the SytHIL framework was presented. The
framework enables the integration of QEMU models, SystemC
models and RTL hardware descriptions into one unified VP.
Therefore, SytHIL simplifies the combined testing and verifi-
cation of both the target software and the target hardware RTL
descriptions. To instantiate the RTL descriptions FPGAs are
used, as they are faster than RTL simulators. To exhibit the
capabilities of our framework relevant use case, such as Linux
boot and data transfer via network, were demonstrated and
benchmarked. All measurements were carried out using AWS
FPGA cloud servers as simulation hosts, as they provide an
inexpensive, standardized platform that is both powerful and
easily scalable.

Overall, our results show good performance, but care must
be taken when designing the VP to ensure that the distribution
of components between the various supports is optimal and
reflects the use case. One aspect of this is moving data between
the FPGA and the host which incurs an overhead. We have
shown a significant improvement on data throughput, adopting
the SystemC DMI mechanism, which provides more flexibility
and performance.

Eventhough, the SytHIL framework is already in use indus-
trially we plan to extend it. In future work we will improve
the performance of the SytHIL framework by enabling DMI
access from the FPGA to the SystemC domain. In addition,
we will address timing synchronization between the three
simulation domains, as this is currently not handled by SytHIL
in an efficient fashion.
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