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Abstract—Virtual Platforms (VPs) are an essential enabling
technology in the System-on-a-Chip (SoC) development cycle.
They are used for early software development and hardware/soft-
ware codesign. However, since virtual prototyping is limited by
simulation performance, improving the simulation speed of VPs
has been an active research topic for years. Different strategies
have been proposed, such as fast instruction set simulation using
Dynamic Binary Translation (DBT). But even fast simulators
do not reach native execution speed. They do however allow
executing rich Operating System (OS) kernels, which is typically
infeasible when another OS is already running.

Executing multiple OSs on shared physical hardware is typ-
ically accomplished by using virtualization, which has a long
history on x86 hardware. It enables encapsulated, native code
execution on the host processor and has been extensively used
in data centers, where many users share hardware resources.
When it comes to embedded systems, virtualization has been
made available recently. For ARM processors, virtualization
was introduced with the ARM Virtualization Extensions for the
ARMYyv7 architecture. Since virtualization allows native guest code
execution, near-native execution speeds can be reached.

In this work we present a VP containing a novel ARMvS8
SystemC Transaction Level Modeling 2.0 (TLM) compatible
processor model. The model leverages the ARM Virtualization
Extensions (VE) via the Linux Kernel-based Virtual Machine
(KVM) to execute the target software natively on an ARMvS
host. To enable the integration of the processor model into a
loosely-timed VP, we developed an accurate instruction counting
mechanism using the ARM Performance Monitors Extension
(PMU). The requirements for integrating the processor model
into a VP and the integration process are detailed in this work.

Our evaluations show that speedups of up to 2.57x over
state-of-the-art DBT-based simulator can be achieved using our
processor model on ARMv8 hardware.

Index Terms—SystemC, TLM, ESL, KVM, Virtualization

I. INTRODUCTION

With the technological advances predicted by Moore’s law,
Hardware/Software (HW/SW) systems have become more and
more complex over the last decades. Today, it is common
for systems to consist of many processors, accelerators and
peripherals. Even small embedded systems run complex soft-
ware stacks, often consisting of millions of lines of code. At
an average error rate of one to two errors per hundred lines
of code, this adds up to thousands of errors [1]. VPs, using
TLM and its loosely-timed coding style [2], have become
an essential tool for finding and fixing these errors in early
phases of the design cycle. For example, they are used in
the automotive industry to increase system test throughput by
significantly reducing test setup and test analysis overhead in
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Fig. 1. ARM-on-ARM overview

comparison with physical prototypes [3]]. In addition, they can
be used for HW/SW codesign, architecture exploration and
design verification [4].

For efficient employment of a VP in the design cycle,
rapid simulation speed is paramount, e.g. when debugging a
software problem that only arises after a certain runtime. When
executing the target software, such as the Linux kernel, the
performance of the Instruction Set Simulator (ISS) dominates
the performance of the VP, since comparably little execution
time is spent in other components. State-of-the-art solutions
use DBT-based ISSs to emulate the target Instruction Set
Architecture (ISA) on the host ISA, e.g. ARMvS on x86-64.
This incurs a significant performance overhead, since the target
instructions are translated to the host ISA at runtime and a
one-to-one instruction translation is rarely possible.

Virtualization enables encapsulated, native execution of
software beyond userspace at near native speed [5[. It is
available for the ARMvVS architecture using the ARM VE [6].
Here, ARMv8 code can be executed on the ARMvVS8 host
processor in a special guest mode. This is enabled by an
additional Exception Level (EL) [[7]. When using the ARM VE
the Linux kernel is executed in EL2 with the highest privileges,
while guest code is executed in EL1 and ELO with lower
privileges. This way encapsulation is ensured. KVM offers
a Linux kernel API to setup and execute code in guest mode
on ARM hardware.

The main idea of the proposed approach is depicted in
Figure [T} In this work we use the ARM VE via KVM to
execute the target software of an ARMv8 VP natively on
ARMVS host hardware eliminating the need for DBT.

The contributions of this work are:
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o A high-performance SystemC/TLM-compatible ARMv8
processor model using KVM for native execution

e An instruction counting mechanism for loosely-timed
SystemC/TLM simulation with the processor model using
the ARM PMU

e An ARMv8 VP using the novel processor model to
evaluate representative benchmarks

II. RELATED WORK

In the context of VPs mainly two types of ISSs are common.
First, cycle-accurate simulators such as GEMS [§] are used
when high modeling detail is needed. In these simulators
low-level behavior such as caching or branch prediction is
reproduced. Due to the high modeling detail, cycle-accurate
simulators do not offer sufficient performance for interactive
simulation of complex target software. Hence, instruction-
accurate simulators exist, which focus on modeling the be-
havioral aspects of the target ISA. These simulators offer
sufficient modeling detail and simulation performance for
software development and verification. Nowadays, many state-
of-the-art instruction-accurate system simulators incorporate
DBT-based ISSs [9]-[11]. These simulators are fast enough
to execute complex target software, such as rich OS kernels,
at reasonable speeds. In addition they offer deep introspection
into the processor state which is advantageous for debugging.
However, they still incur the performance overhead associated
with DBT, which limits the achievable simulation speed.

Virtualization hardware extensions, such as ARM VE, have
been used in the system simulation context to improve the sim-
ulation performance. For example, QEMU [9] offers a KVM
backend as an alternative to DBT that enables native code
execution via virtualization if KVM is available. It is important
to note, that the use of KVM implies the same ISA for target
and host. Since QEMU simulations are untimed, no timing
information can be gathered from such a simulation. Also
QEMU is CPU centric and does not offer a SystemC/TLM
interface to connect other simulation building blocks, which
limits interoperability.

Native simulation approaches [12]-[14] aim to improve
simulation speed by eliminating the instruction translation
costs at runtime as well as the induced overhead due to
inefficient translations. In these works the target software is
compiled to the host ISA and executed directly on the host.
However, this requires the software to use specific APIs or a
direct annotation of the software. Also it induces a decrease
in simulation accuracy since target and host ISA differ. The
mandatory availability of the target software source code is
another restriction for this approach. The use of a combination
of native execution and static binary translation to enable the
simulation of VLIW processors has also been proposed [/15].
By translating target binaries to native binaries the need for
target source code can be eliminated, but the other limitations
persist. Sandberg et al. proposed using KVM in combination
with GEMS to fast-forward target software execution to a
region of interest for architectural simulation and performance
estimation [[16]]. They note that the limited introspection into
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the processor caches when switching from KVM to GEMS5
limits the accuracy of this technique. Nevertheless, a signifi-
cant speedup was demonstrated.

In summary, it was shown that virtualization technologies
have been used to improve the performance of system simu-
lations. They do not offer the same level of introspection as
DBT-based solutions, which can be disadvantageous in some
scenarios.

III. AOA-CPU: AN ARM-0ON-ARM PROCESSOR MODEL
FOR VIRTUAL PLATFORMS

Our ARM-on-ARM (AoA) processor model, AoA-CPU, is
a SystemC/TLM compatible ARMVS processor model that
executes the target software of an ARMv8 VP on ARMvS
hardware natively. Thus, the target software does not need to
be recompiled for a different architecture and the binary does
not have to be modified for execution on the VP. The VP is
compiled for the ARMv8 architecture, then native execution
is achieved by utilizing the ARM VE via KVM.

An overview of AoA-CPU’s execution loop is shown in
Figure 2| It can be observed that the functionality of the
model is distributed on all privilege levels from user to guest
mode. Before the run loop begins, AoA-CPU instantiates a
KVM virtual machine with a virtual CPU, which is later used
to execute the target software natively. The system’s main
memory is also mapped at this point. KVM has specific re-
quirements regarding its memory mapping which are described
in Section [[lI-A] The target software is executed in guest mode
by KVM, which itself is part of the Linux kernel. To interact
with KVM the corresponding API is used from user mode
which is also where the remainder of the VP is executed.

Since the simulation is loosely-timed, the processor is
allowed to run ahead of the global simulation time. This
amount of time is referred to as the quantum. The processor
executes instructions at a predefined clock speed, therefore the
quantum can also be expressed in terms of instructions:

instructions per quantum = quantum - clock rate

Since KVM does not provide a method for executing a pre-
defined number of instructions, the QuantumSync instruction
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Fig. 3. Overview of instruction counting mechanism

counting mechanism based on Linux perf and the ARM PMU
was implemented. QuantumSync is described in Section [[II-B

During execution of the VP, the AoA-CPU run loop is
triggered for every simulation quantum. KVM will execute
as many target instructions as possible until it is stopped by
QuantumSync or when interactions with other components of
the VP occur. These interactions are typically interrupts or
Memory-Mapped Input Output (MMIO) accesses. Interrupts
have to be signaled from the VP to the processor model via
KVM. The interrupt mechanism is introduced in Section
MMIO accesses stop KVM and are then transfered to the rest
of the VP, which is described in Section [I1I-C

In addition, a full GNU Debugger (gdb) integration is
available for AoA-CPU which allows interactive debugging
of target software.

A. Memory

Ao0A-CPU requires access to the VP’s main memory for
target software execution. For this the SystemC/TLM Direct
Memory Interface (DMI) is used, which allows the processor
model to map memories directly and access it via a pointer.
This DMI pointer is made available to AcA-CPU in the setup
phase of the VP and is then passed to KVM for memory
mapping. DMI invalidations at runtime could be forwarded
to KVM, as it allows for changing the memory mapping at
runtime. However, this is left for future work. By setting
up the memory as described above, it can now be accessed
directly from the KVM virtual CPU without leaving the guest
or interrupting target code execution.

B. The QuantumSync Instruction Counting Mechanism

A processor model in a loosely-timed SystemC simulation
executes a predefined number of instructions for every quan-
tum as explained at the beginning of this section. KVM does
not offer to execute a fixed number of instructions, instead
it will run until it is disrupted, e.g. by an MMIO access or
an interrupt. At first glance this renders KVM unsuitable for
integration into a loosely-timed SystemC simulation. However,
KVM can be interrupted externally since it will stop execution
at the reception of an unmasked Linux signal. In this work,

the ARMv8 PMU in combination with Linux perf is used
to generate this signal. The PMU is an optional hardware
extension that equips the processor with a set of non-invasive
debugging components that permit the observation of data
and program flow inside the processor [7]. Among these
components is an accurate cycle counter that can be used
for counting instructions executed on the processor. The other
component of the instruction counting mechanism is the Linux
perf profiling tool. It can be used in conjunction with the PMU
to count only the instructions that are executed in guest mode
which are relevant for the quantum. To enable perf to count
instructions executed in guest mode, a patch was applied to
the Linux kernelll

An overview of the mechanism is depicted in Figure 3| First,
AoA-CPU sets up a perf event for counting guest instructions
that will send a signal when a target instruction count is
reached. This number is equal to the number of instructions
that should be executed in this quantum. When the signal is
received by KVM, target software execution is stopped. Now
the actual instruction count is retrieved from perf. This count
can be slightly different than the target instruction count, since
the perf signal requires some cycles to reach KVM. Finally,
time is synchronized to the global SystemC time using the
retrieved instruction count. The accuracy of this instruction
counting method is evaluated in Section

C. Memory-Mapped Input Output

MMIO facilitates communication between AoA-CPU and
the peripherals of the VP. When an MMIO access occurs,
KVM will interrupt target software execution, as this is an
unmapped memory access. AocA-CPU will handle this exit as
depicted in Figure [2| It will gather the necessary information
about the memory access, such as address, data, and whether
a read or a write has occurred. From this information a
TLM generic payload is constructed which is sent out via the
TLM blocking transport interface. After satisfying the MMIO
request, AoA-CPU will synchronize with the SystemC global
simulation time by acquiring the current instruction count
from QuantumSync and executing a SystemC wait. Then target
software execution is resumed.

D. Interrupts

During VP simulation interrupts will occur which the pro-
cessor model has to react to. In the ARMVS architecture there
are two main interrupts to the processor: the normal IRQ
interrupt, and the fast FIQ interrupt. Usually these interrupts
are connected to an interrupt controller such as the ARM
Generic Interrupt Controller (GIC). Peripherals, e.g. timers or
UARTS, signal their interrupts to the GIC which in turn raises
the interrupt of the processor. For example, the ARM Generic
Timer is used by the Linux kernel to generate a periodic
interrupt for the scheduler. KVM allows to place the interrupt
controller in user space or in kernel space. The first option
fits well into a SystemC VP, because it allows to integrate the

Uhttps://patchwork kernel.org/cover/10874767
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Fig. 4. AoA-VP overview

processor model with a TLM interrupt controller model. This
offers more introspection than placing the interrupt controller
in kernel space. Interrupts can be propagated from peripherals
to the interrupt controller and then to the processor model via a
SystemC signal. In AoA-CPU these SystemC signals are used
with the KVM API to signal interrupts to the KVM virtual
CPU which reacts to the interrupt signal accordingly.

IV. AOA-VP: A FAST ARM-ON-ARM VIRTUAL
PLATFORM

The ARM-on-ARM Virtual Platform (AoA-VP) was con-
structed to demonstrate the capabilities and evaluate the per-
formance of the novel processor model. An overview of AoA-
VP is shown in Figure f] Besides the AocA-CPU it contains
several other peripherals:

o An ARM GICv2 interrupt controller model
¢ A memory model

e A timer model

o Two instances of a UART model

e A bus model

The peripheral models are connected to a bus model via
SystemC/TLM sockets. Peripheral interrupts are sent to the
GICv2 via SystemC signals. The GIC then controls the FIQ
and IRQ signals of the processor. AoA-VP is designed for
executing the CoreMark benchmark and booting the Linux
kernel. For the CoreMark benchmark the interrupt controller is
not used and the timer model provides access to the wall-clock
time. When Linux is executed, the timer model implements a
memory-mapped ARMv8 Generic Timer, which is used by
the Linux kernel for generation of the scheduler interrupt.
The GICv2, memory, UART, and bus model are part of
Virtual Components Modeling Libraryﬂ while the timer was
implemented as part of this work.

V. EXPERIMENTAL EVALUATION

Several experiments were conducted to evaluate the perfor-
mance of AoA-CPU in the AoA-VP. First, the accuracy of
the instruction counting mechanism was analyzed, since this
mechanism is crucial for exact simulation and performance

Zhttps://github.com/janweinstock/veml
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evaluation. Next, the CoreMark benchmark and the Linux
boot time were evaluated as performance indicators. CoreMark
was selected to quantify AoA-CPU’s performance since it
is a standard CPU benchmark. It is small in size and the
Memory Management Unit (MMU) is not used. DBT-based
simulators typically perform well on this workload since the
entire translated program can be cached and no MMU simu-
lation overhead is incurred. In addition the Linux kernel boot
time was added as a performance metric, since it is control
flow driven and utilizes the MMU. In DBT-based simulators,
simulating an MMU adds overhead to the processor model,
because page table walks are executed for every uncached
address translation. Unlike DBT-based simulators AoA-CPU
utilizes the host MMU. Therefore, no MMU simulation is
required.

For comparison the identical target binaries were executed
on Synopsys Virtualizer O-2018.09-SP1 [10] using the ARM
Fast Models. Since AoA-CPU is executed on ARMvS hard-
ware and Virtualizer on x86-64, CoreMark was also executed
natively on both platforms to ascertain what percentage of the
native performance can be utilized in the VP. A Socionext Syn-
Quacer Developerbox containing a Socionext SC2A11 SoC
with 24 ARM Cortex-A53 cores clocked at 1 GHz running
Linux 5.1.0-rc2 was used to execute AoA-VP. Virtualizer was
executed on an Intel Xeon E5-2687W v4 server machine
clocked at 3 GHz running CentOS 6.6. The results of these
evaluations are presented in the following sections.

A. Accuracy Instruction Counting

To evaluate the accuracy of the instruction counting mech-
anism, a program containing a loop was executed using AoA-
VP. The number of executed loop iterations is counted in a
register:

_loop :
add x2, x2, #1
cmp x2, xl1
ble _loop

Target software execution is then interrupted by the signal
generated by perf as explained in Section |III-B| Since the
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Fig. 6. CoreMark performance comparison

number of instructions in one loop iteration is known, the
number of actually executed instructions can be calculated as:

instructions

count = loops - + prior instructions

loop

Because the loop can be interrupted at any instruction an error
of two instructions cannot be eliminated. Next, the instruction
count measured with perf is retrieved. The difference between
these two instruction counts constitutes the error in the in-
struction counting mechanism. Figure [5] shows the average
absolute error in the perf instruction count for different target
instruction counts. Even though there is a slight increase in the
absolute error with rising target instruction counts, the overall
error in the instruction counting is very low (<0.01%). A slight
quantum overshoot occurs, which is generally unproblematic.

B. CoreMark Performance

The CoreMark benchmark was executed on AoA-VP and
Synopsys Virtualizer for different SystemC/TLM quanta. Fig-
ure [6] presents the results of this evaluation. It can be observed
that for quanta larger than 300us AoA-CPU outperforms
Synopsys Virtualizer. For lower quanta the overhead of context
switching between AoA-CPU in guest mode and the remaining
VP dominates the performance. The peak performance of
A0A-CPU is 2778 CoreMarks/s which corresponds to 506
Million simulated Instructions Per wall-clock Second (MIPS).
AoA-CPU MIPS can be calculated accurately, since the exact
number of executed instructions for the target binary is known
from the Virtualizer simulation.

In total, an average speedup of 2.08x over Virtualizer was
achieved, even though Virtualizer is executed on significantly
more powerful hardware. AoA-CPU performs better than
Virtualizer, because the benchmark is executed natively on
the processor. Virtualizer on the other hand incurs the DBT
overhead of the ARM Fast Models as explained in Section
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C. Linux Boot Time

Linux boot time was selected as a benchmark for a realistic
software workload for AoA-VP. The time from simulation
start to login shell was measured for different SystemC/TLM
quanta. Figure [/| summarizes the results of this evaluation.
Linux boots faster on AoA-CPU than on Synopsys Virtualizer
for quanta larger than 15ps. A peak performance of 3.72s
boot time was achieved which corresponds to a speedup of
2.57x over Virtualizer. This speedup was achieved even though
AoA-CPU is executed on less powerful hardware. For smaller
quanta the performance is again dominated by the expensive
context switches between AoA-CPU in guest mode and the
remaining VP.

It can be observed, that for the Linux boot AoA-CPU
provides a higher speedup over Virtualizer than for CoreMark.
In Virtualizer the MMU of the processor has to be simulated,
whereas AoA-CPU uses the physical MMU. Hence, address
translations with page table walks as they are used by Linux
are more expensive on Virtualizer because they are not accel-
erated by hardware.

There is a performance decrease for quanta larger than
100 pus on Synopsys Virtualizer using the ARM Fast Models.
Since both components are proprietary the reason for this
slowdown could not be further investigated.

D. Native Performance Ratio

Since the Socionext SynQuacer hardware executing AoA-
VP is different from the hardware executing Synopsys Virtu-
alizer, an evaluation of the native CoreMark performance was
conducted. For this, CoreMark was compiled for the x86-64
architecture of the Xeon host of Synopsys Virtualizer and for
the ARMv8 Socionext SynQuacer. Then the CoreMark bench-
mark was executed natively on each platform. The results of
this evaluation are summarized in Table E} On average, on
the Intel Xeon hardware, a score of 16 159 CoreMarks/s was
achieved. The Socionext SynQuacer achieved a score of 3294
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TABLE I
COREMARK PEAK PERFORMANCES (PP) COMPARISON.

Technology / Platform Simulation PP Native PP Ratio
Synopsys Virtualizer / Intel Xeon 1332 16 159 8%
AoA-CPU / SynQuacer 2778 3294 84%

CoreMarks/s. This is due to the 3x higher clock frequency and
completely different architecture of the Intel Xeon. The result
indicates, that the Intel Xeon processor is more powerful and
capable of executing more instructions in a given time than
the Socionext SynQuacer.

In the Synopsys Virtualizer VP running on the Intel Xeon,
a performance of 1332 CoreMarks/s was reached. Here the
ARMVS target software instructions are emulated using the
ARM Fast Models. AoA-CPU achieved a score of 2778
CoreMarks/s on the Socionext SynQuacer whilst executing the
same target binary.

Due to the overhead of the DBT in the ARM Fast Models,
the Synopsys Virtualizer VP is only capable of reaching 8%
of the native performance. AoA-CPU on the other hand is able
of reaching 84% of native performance leveraging the ARM
Virtualization Extensions on the Socionext SynQuacer. This
makes our proposed methodology 10x more efficient.

Howeyver, it has to be noted that AvA-CPU cannot execute a
hypervisor or a trusted execution environment. Also it is not as
extensible as a DBT-based simulator, since the target software
is executed natively. For example, it is currently not possible
to extend the instruction set of AoA-CPU.

VI. CONCLUSION

This paper revealed that utilizing virtualization hardware ex-
tensions, such as the ARM VE, in a SystemC/TLM simulation
is viable, fast and accurate. For this, a prototype implementa-
tion was presented including a SystemC/TLM compatible pro-
cessor model, AoA-CPU, that utilizes said hardware extensions
via KVM on modern ARMv8 hardware. With QuantumSync, a
solution to the problem of instruction counting inside the KVM
guest was proposed and its accuracy evaluated. In addition,
A0A-VP, a VP containing the AoA-CPU, was developed
for verification and performance evaluation. Since ARMvS8
hardware extensions are used, the processor model and VP
are compiled for the ARMvS architecture and executed on
ARMYVS8 hardware.

Two representative workloads were selected as performance
indicators: the CoreMark CPU benchmark and the Linux
kernel boot. AoA-VP with AoA-CPU outperformed the state-
of-the-art Synopsys Virtualizer system simulator containing
the ARM Fast Models by a factor of up to 2.08x and 2.57x
respectively for the aforementioned workloads. This speedup
was achieved even though Virtualizer was executed on more
powerful hardware.

The ARMvVS hardware utilized for benchmarking AoA-VP
is available for less than half of the price of the hardware

utilized for the Virtualizer benchmarks, making our proposed
methodology not only faster but also more cost efficient than

state-of-the-art DBT-based simulators.

Since AoA-VP is targeted for software development, a full
kernel mode debug integration is available in AoA-CPU. When
debugging, there is no discernible difference between AoA-VP
and physical hardware.
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