
PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

Optimizing Temporal Decoupling using Event Relevance
Lukas Jünger

juenger@ice.rwth-aachen.de
RWTH Aachen University

Carmine Bianco
carmine.bianco@synopsys.com

Synopsys GmbH

Kristof Niederholtmeyer
kristof.niederholtmeyer@synopsys.com

Synopsys GmbH

Dietmar Petras
dietmar.petras@synopsys.com

Synopsys GmbH

Rainer Leupers
leupers@ice.rwth-aachen.de
RWTH Aachen University

ABSTRACT
Over the last decades, HW/SW systems have grown ever more com-
plex. System simulators, so called virtual platforms, have been an
important tool for developing and testing these systems. However,
the rise in overall complexity has also impacted the simulators.
Complex platforms require fast simulation components and a so-
phisticated simulation infrastructure to meet today’s performance
demands. With the introduction of SystemC TLM2.0, temporal
decoupling has become a staple in the arsenal of simulation ac-
celeration techniques. Temporal decoupling yields a significant
simulation performance increase at the cost of diminished accu-
racy. The two prevalent approaches are called static quantum and
dynamic quantum. In this work both are analyzed using a state-of-
the-art, industrial virtual platform as a case study. While dynamic
quantum offers an ideal trade-off between simulation performance
and accuracy in a single-core scenario, performance reductions can
be observed in multi-core platforms. To address this, a novel perfor-
mance optimization is proposed, achieving a 14.32% performance
gain in our case study while keeping near-perfect accuracy.

1 INTRODUCTION
The overall rise in HW/SW system complexity and strong demands
regarding safety and security have reinforced the need for thorough
system validation in many industries. For example, in the auto-
motive sector rigorous requirements, laid down in ISO 26262 [1],
lead to a strong demand for high-reliability compute platforms. To
ease the development of these intricate HW/SW systems, software
simulators, commonly referred to as Virtual Platforms (VPs), are
deployed. VPs bear several advantages compared to traditional hard-
ware prototypes. They allow for deep introspection and offer a high
flexibility regarding hardware and software changes. When VPs are
made available early in the design cycle, software development can
start months before the physical prototype is available and hard-
ware changes can still be performed, enabling HW/SW codesign. In
addition, VPs are easily scalable once their construction is complete,
while usually only a limited quantity of hardware prototypes is
available. This enables early large-scale system testing.

However, the growing complexity of the simulated HW/SW sys-
tem is also reflected in the VP. Unfortunately, this often impacts
simulation performance, diminishing VP usability. Numerous ways
of improving performance have been proposed, which usually come
at the price of reduced accuracy. This issue also affects the tempo-
ral decoupling technique introduced with SystemC TLM2.0 and its
loosely-timed coding style [2]. Here, simulation components are al-
lowed to run ahead of the global simulation time instead of keeping

Event queue

Global Quantum

Proc. 1

Proc. 2

Proc. 3

sc
_t
im

e_
st
am

p(
)

Local Quantum

Local time offset

Local time offset

quantum_wait()

wait() [TLM2 call]

Figure 1: Dynamic quantum execution

tight synchronization. The maximum amount of simulation time a
component is allowed to run ahead is referred to as the quantum.
Temporally decoupled components synchronize their local time
with the global simulation time at the end of each quantum. When
simulating processors the quantum may also be given in cycles
or instructions. To increase performance, the quantum should be
as large as possible to reduce context switching. However, a large
quantum reduces simulation accuracy, as events may be handled
too late. Therefore, deploying temporal decoupling is not trivial.
This work makes the following contributions to addressing this
issue:

(1) Thorough analysis of the two prevalent SystemC TLM2.0
temporal decoupling schemes

(2) Novel performance optimization in temporally decoupled
simulations while keeping near-perfect accuracy

(3) Representative case study to show the potential of ourmethod
using an industrial, state-of-the-art VP

2 RELATEDWORK
Temporal decoupling increases performance by reducing context
switches. However, communication between components is im-
pacted. At large temporal offsets event notifications between com-
ponent might be handled too late or missed entirely. Therefore,
the fundamental question is how to aptly select the temporal off-
set or when to synchronize time between components. Besides the
static quantum [2] and the dynamic quantum described in Section 3,
several works seek to address these issues.

Gläser et al. propose a predictive approach in [5]. In their work a
single-core scenario is assumed with a source generating events at



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

Sim. time
sc_time_stamp() T1 T2 T3 T4

Evt. queue 1 2 3 4

Rel. CPU0 ✓ ✓

Rel. CPU1 ✓ ✓

CPU0
Local Quantum

CPU1

Local Quantum

Figure 2: Dynamic quantum boundaries

Sim. time
sc_time_stamp() T1 T2 T3 T4

Evt. queue 1 2 3 4

Rel. CPU0 ✓ ✓

Rel. CPU1 ✓ ✓

CPU0

CPU1

Local Quantum

Local Quantum

Figure 3: Quantum boundaries with ERO

random points in simulation time. To optimize the quantum size and
set the next synchronization boundary, a predictor is used. A safety
margin is subtracted from the predicted event occurrence time and
the next boundary is set there. At this point the processor model
switches to cycle-accurate simulation until the event is triggered.
Here, the accuracy-performance trade-off is controlled by the safety
margin size. A larger margin leads to more time spent in slower
cycle-accurate simulation, but less missed events.

Another approach that strives to avoid the accuracy issue alto-
gether is proposed by Jung et al. [7]. Traditional TLM2.0 temporal
decoupling is combined with a rollback mechanism. The quantum
is executed speculatively, if an event would be missed the quantum
size is reduced and the rollback mechanism is deployed to execute
it again. Thus, temporal errors can be avoided completely. However,
this technique has a significant performance impact.

In parallel, multi-threaded SystemC simulation, the problem of
synchronization arises as well. Weinstock et al. propose to partition
the simulation in several clusters that are executed in parallel [11].
Each cluster adopts a static quantum approach, while events noti-
fied across cluster boundaries carry a notification delay, which is
a system parameter. By ensuring that the static quantum value is
smaller than this notification delay, high accuracy can be achieved
within single clusters. Performance can be increased using large
delays, but this diminishes the overall accuracy. Manual platform
partitioning and selection of the notification delay is required. Sim-
ilar approaches are taken in [8, 12]. Another way to avoid the issue
in parallel simulations is proposed by Schmidt et al. [10]. In their
work threads are partitioned in segments that are bounded by calls
to SystemC’s wait() function. These segments are analyzed for
data dependencies. If no data dependencies are detected between
segments, they can be computed in parallel. Temporal errors are
avoided, but the parallel segments are smaller and higher runtime
overhead for context switches is incurred. Schuhmacher et al. pro-
pose a similar approach with parSC [9]. Here, parallel simulation
is confined within each delta cycle. For SystemC simulations dis-
tributed over networked compute nodes, Combes et al. propose a
similar parallel simulation approach [4].

3 MOTIVATION
The static quantum is the standard temporal decoupling technique
of SystemC [2]. Using this technique, synchronization points are
set at integer multiples of a global quantum parameter, shared by
all SystemC processes. It may be changed during simulation, but
usually remains more or less constant. The local quantum is the
offset between current simulation time and the next synchroniza-
tion point. This approach carries several disadvantages. First and
foremost, the optimal quantum size has to be determined manually.
In addition, the optimal quantum size may change over the duration
of the simulation. Transaction-heavy phases may require a tighter
synchronization than computation phases. Furthermore, the stan-
dard does not specify whether a synchronization should occur after
every inter-component transaction. Doing so preserves accuracy,
but has an impact on performance due to more context switch-
ing. The intermediate synchronization of processes that have not
exhausted their quantum is referred to as "breaking the quantum".

To overcome the disadvantages of the static quantum approach,
the so called dynamic quantum was introduced. It differs from
the static quantum mainly by its choice of synchronization points.
Instead of placing the quantum boundaries at integer multiples of
the global quantum, they are placed at the time of the next scheduled
SystemC timed event notification. A global quantum value still
exists as an upper limit for the quantum size. Compliance with the
SystemC standard is preserved, which makes explicit provisions
for overriding the local quantum computation.

An example is depicted in Figure 1. Three SystemC processes
are executing. The current simulation time is marked by the dotted
line labeled with sc_time_stamp(). The first process has executed
until its local time has reached the time of the next pending event
notification. It has called the special quantum_wait() function
to signal that it has ended its quantum and is now waiting for
synchronization. The local time of the second process has not yet
reached the time of the next pending event notification, but the
process has broken the quantum by calling the wait() function,
e.g. after finishing a transaction, and is now waiting for the rest
of the simulation to synchronize. When the third process starts
executing it will first catch up until it has synchronized with process
2. Afterwards, both processes can execute until either the time of
the next scheduled event is reached or the quantum is broken again.

2



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

Global FLASH Bus

CRAM Bus

Cluster1

CPU2 CPU3

FLASH, local RAMs/caches

Inter-processor Bus

Cluster0

CPU0 CPU1

FLASH, local RAMs/caches

Inter-processor Bus

Cluster2

CPU4 CPU5

FLASH, local RAMs/caches

Inter-processor Bus

Inter-cluster Bus

System Bus

Peripheral Bus High-Speed Bus

FlexRay Ethernet
PeripheralGroup1

EEPROM

PeripheralGroup0

Interrupt
Controller

PeripheralGroup2

GTM

PeripheralGroup3...9

Clock/Reset
Controller

Figure 4: Overview of Renesas RH850-based VP used in the case study. The Bosch GTM highlighted is highlighted in red.

The primary advantage of the dynamic quantum approach is
that it yields a near-perfect trade-off between accuracy and per-
formance in single-core VPs. No events are missed, while at the
same time computation is not hindered by an undersized quantum.
However, a downside of the dynamic quantum approach can sur-
face in multi-core VPs. When a platform contains multiple event
generating modules, the average quantum size may be diminished
especially when one module generates events at a much higher
frequency than the others. This leads to a deterioration in overall
simulation performance that in some use-cases may be lower than
the performance achieved by a well tuned static quantum.

4 EVENT RELEVANCE OPTIMIZATION
The dynamic quantum approach sets the quantum boundary at the
time of the next scheduled SystemC event. Due to the global nature
of the timed event queue, this is done regardless of whether receiv-
ing the event at this time is relevant for the correct functionality
of the VP. There may be events that are internal to one module
of the VP and the module whose quantum is limited by the event
does not need to receive it at all. These events are called irrelevant
events. For example, one component could contain a timer that
overflows at certain points in simulation time. These events will
be taken into account for all quantum computations, even though
they are only relevant to the one component. This is depicted in
Figure 2. It can be observed that the first event in the event queue
limits the quanta of CPU0 and CPU1 albeit being irrelevant to either
CPU. This unnecessarily decreases the overall performance of the
simulation, because needless synchronization overhead is incurred.

To mitigate this issue we propose Event Relevance Optimization
(ERO). With ERO breaking the quantum is avoided when the respon-
sible event is irrelevant to the component. This is done by taking
event relevance into account during each quantum computation.
An example is shown in Figure 3. Event 1 in the timed event queue
is irrelevant to both CPUs, therefore it is not considered as a quan-
tum boundary. The second event is only relevant to CPU0, which is

why CPU0’s next quantum boundary is set to its notification time.
For CPU1 event 3 is the next relevant event.

To identify irrelevant events for ERO, a SystemC profiling tool
was developed to trace process activations due to event notifica-
tions during a simulation run. Our tool incurred a runtime overhead
of 214%, but only one profiling run is required. When the profiling
step is finished, the gathered data is post-processed for analysis.
During this post-processing an event dependency graph is generated.
This is a weighed, directed graph whose nodes represent the Sys-
temC events notified during simulation. The directed edges describe
which SystemC process was started due to which event notification
and which event was then notified by the process. There are two
distinct event-process-event patterns that have to be taken into ac-
count. One pattern is the direct event notification described above,
where a process is triggered by one event and notifies another event
itself. The second pattern is an indirect event notification scenario,
in which a process is triggered by a SystemC signal value change,
that was in turn initiated by another process. In the latter case
the signal value is updated by the SystemC kernel in response to
another process’s request instead of by the other process directly.
After the construction of the event dependency graph is complete,
it can be used for an automatic or manual analysis, e.g. by using
graph visualization tools, to identify which events are irrelevant to
a simulation component. These events can then be entered into an
event denylist, which can then be supplied to the simulation.

It is important to keep in mind that for the ERO approach to
be beneficial, the additional cost of checking event relevance has
to be offset by the potential performance gain. In order to retain
SystemC standard compatibility, an annotation of irrelevant events
in the source code of the simulation components is not an option.
Additionally, this is often entirely impossible because the source
code of the simulation component may not be available, especially
if it comes from a third party. Therefore, the dynamic quantum
computation in the SystemC kernel is modified. Instead of setting

3



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

0 50 100 150 200
0

50

100

150

200

Time [ms]

RT
F

Dynamic
Static 1 Cycle
Static 10 Cycles
Static 100 Cycles
Static 100000 Cycles

Figure 5: RTF smooth over the entire simulation

the time of the next timed event as a quantum boundary, an addi-
tional relevance check is executed using the supplied denylist and
the time of the next relevant event is used.

In the case study presented in the next section we show, that
using our approach simulation performance can be improved sig-
nificantly while still keeping nearly all the accuracy of the dynamic
quantum approach.

5 CASE STUDY
The VP chosen for the case study is a register-accurate emulation
of the Renesas RH850/E2x-FCC2 [3], a Microcontroller Unit (MCU)
targeted for automotive tasks. An overview of the VP is provided
in Figure 4. It can be observed that the platform consists of 6 CPUs,
each attached to a complex bus infrastructure. The cores are sub-
divided into 3 clusters encompassing RAM and a flash memory
storing the code for both processors of the cluster. A main system
bus connects the clusters to a peripheral bus, which hosts 10 groups
of peripherals. Among them, and highlighted by the red pattern, is
a Bosch Generic Timer Module (GTM).

The GTM is a programmable, generic timer platform, which is
used for engine control tasks. Once the CPU has initialized and con-
figured the GTM for a specific task, it executes independently and
keeps interactions to a minimum to reduce the CPU’s load [6]. The
GTM has a modular architecture which divides it into clusters. In-
side each of these clusters execution is driven by a special-purpose,
programmable core called Multi-Channel Sequencer (MCS). Each
MCS unit manages up to 8 tasks or channels with a single pipelined
data path. A built-in hardware scheduler selects the next task to
be executed [6]. In this case study, the GTM is configured to con-
tain 10 such clusters. Modeling this architecture and integrating
it efficiently into the VP using SystemC TLM2.0 presents some
challenges. Due to the GTM’s highly modular structure, a high no-
tification load is generated across the channels and many context

1 10 100 1000 10000 100000

60

80

100

120

Dynamic Quantum

Cycles per Quantum

RT
F

Figure 6: Average RTF over the entire simulation

switches occur between the clusters. To improve performance the
MCS units employ temporal decoupling internally with a static
quantum of 10 cycles. The quantum is deliberately kept small due
to the module’s strict timing requirements.

To focus on the interaction between cores and peripherals, a
single-core, multiple-initiator task was chosen for evaluation. In
this scenario CPU0 executes in a temporally decoupled fashion while
both cores of the cluster and multiple peripherals, such as reset
and interrupt controller and the sub-modules within the GTM, can
initiate transactions. The test software simulates an engine position
management task, as outlined in [6]. For each cylinder in an engine,
the crankshaft and camshaft position sensors generate signals from
whose correlation different parameters, such as optimal cylinder
ignition time, can be calculated. Instead of executing these calcu-
lations directly on CPU0, they are offloaded onto the GTM. In the
evaluated scenario, the sensor signals are generated during sim-
ulation time and fed directly into the GTM whose MCS units are
programmed to generate the engine position data. To communicate
with the main CPU interrupts are used. The simulation task can
be subdivided into two phases. First, an initialization phase occurs
which lasts approximately 3ms and is characterized by frequent
transactions between the processor and various peripherals whose
parameters are initialized. Afterwards, a steady-state phase begins
in which the CPU enters an infinite control loop which is solely
broken by sporadic interrupts triggered by peripherals, while the
GTM processes the test inputs and calculates the engine position
data. This latter phase continues indefinitely, but for evaluation
purposes the simulation is stopped at the 200ms mark.

6 EVALUATION
In this section static and dynamic quantum are evaluated against
each other using the case study VP. Here, two evaluation criteria
have to be taken into account, namely simulation performance and
simulation accuracy. To measure the simulation performance, the

4



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

10

100

1000

1 10 100 1000 10000 100000

0

1

2

3

4

Dynamic Quantum

Cycles per Quantum

IS
R
in
ac
cu
ra
cy

[µ
s]

Figure 7: ISR timing inaccuracy

Real-Time Factor (RTF) is introduced as:
RTF [tsim] =

Wall-clock time
Simulation time =

TWC[0; tsim]
tsim

The RTF quantifies how much wall-clock time is required to simu-
late a period of simulation time. It is important to note that a lower
RTF signifies higher simulation performance. The RTF measure-
ment is undertaken 20 times over a complete simulation run after
which the values are averaged. In addition to the averaged RTF, a
smoothed RTF is introduced to analyze how the RTF changes over
the duration of the simulation. The smoothed RTF is defined as:

RTFsmooth [tsim] =
TWC[tsim − 1ms; tsim]

1ms
A granularity of 0.1ms has been chosen for the RTFsmooth as a
compromise between obtaining a precise result and avoiding large
oscillations in the results.

6.1 Performance Evaluation
Figure 5 shows the smoothed RTF over the entire simulation. The
initialization phase at the beginning can be clearly distinguished
from the steady-state phase for the remainder of the simulation.
During initialization the smoothed RTF is significantly higher than
later in the simulation, because of the large number of context
switches that occur between the components of the VP which are
set up in this period. In this phase simulation performance is mostly
determined by external components, which is why the frequency
of context switches concerning the main core is less performance
relevant than in later stages. This leads to the RTF curves for the
different temporal decoupling schemes being relatively close to
each other. Afterwards, the steady-state phase starts, which can

0 500000 1000000 1500000 2000000 2500000

mcs4.
ev_27

mcs1.
t_out

mcs2.
ev_7

mcs4.
ev_0

mcs2.
ev_23

icm.
ev_0

mcs2.
ev_0

mcs6.
ev_0

mcs2.
t_out

mcs4.
t_outt

mcs0.
ev_0

sDMAC0.
t_out

sDMAC1.
t_out

mcs1.
ev_0

mcs0.
t_out

Number of notifications

Figure 8: Most frequent quantum-limiting events

be further subdivided into two stages. The former, ending roughly
at the 53ms mark, is characterized by low GTM activity. The RTF
remains roughly constant during this phase. In the latter stage the
RTF is dominated by the Interrupt Service Routine (ISR) triggered
by the GTM, which is why a regular pattern can be observed. Peaks
in the pattern correspond to ISR triggers and a speedup can be
observed where no interrupts occur.

Overall, the dynamic quantum performs roughly on par with
the static quantum with a quantum size of 10 cycles. This can be
explained by the fact that the average quantum duration of the
dynamic quantum amounts to circa 20 ns which corresponds to
8 cycles at the platform’s clock frequency. If compared with the
static quantum at a quantum size of 10 cycles, the dynamic quan-
tum stands out growing to higher RTF peaks at interrupt trigger
timestamps. This is due to the large number of ISR-related event no-
tifications leading to frequent quantum breaks. For larger quantum
sizes the static quantum outperforms the dynamic quantum.

The box plot depicted in Figure 6 shows the average RTF of
the simulation for different quantum sizes for the static quantum
scheme as well as for the dynamic quantum. It can be observed that
the average RTF, which is at its highest in a single-stepping sce-
nario, sharply decreases for small quantum sizes due to the drastic
reduction in the number of context switches. Even a small quantum
size of 2 cycles nearly halves the overhead needed for saving and
restoring the CPU state after each quantum. The static quantum
approach outperforms the dynamic quantum at a quantum size
of 10 cycles. This can again be explained by the average quantum
duration of the dynamic quantum of roughly 8 cycles. The value is

5



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19 200 400 600 800 1000 1200

55

60

65

Global quantum [ns]

RT
F drawWith ERF

drawWithout ERF

Figure 9: Average RTF with and without ERO

constrained by the large number of event notifications throughout
the platform as outlined previously.

6.2 Accuracy Evaluation
Often an increase in simulation performance comes at the cost of
reducing its accuracy. Hence, simulation accuracy is also analyzed
in this case study. As explained previously, the GTM triggers the
execution of an ISR. When executing the simulation using a static
quantum with quantum sizes larger than 1 cycle, ISR execution
is delayed because the signal is only processed by the CPU at the
end of the quantum. This can be seen in the box plot in Figure 7,
where this delay in the ISR execution is plotted for different static
quantum sizes. The dynamic quantum is marked by the blue dotted
line. It can be observed that there is next to no delay in ISR execu-
tion when using the dynamic quantum, because most events are
processed as soon as they are notified, thus preserving near-perfect
accuracy. However, starting at a static quantum size of 5 cycles,
the introduced inaccuracy, in combination with the GTM being
temporally decoupled internally, leads to a chain reaction due to de-
layed event handling which results in an average timing inaccuracy
larger than the duration of a single quantum. In scenarios with 100
or more cycles per quantum, the average delay surpasses the 1 µs
mark. Finally, with quantum sizes of 10.000 and 100.000 cycles per
quantum respectively, the inaccuracies are disproportionately large
to the point that the box plot in Figure 7 requires a logarithmic scale
to accommodate larger values. These results confirm the expected
timing behavior in a static quantum scenario.

In summary, the dynamic quantum approach preserves the per-
fect simulation accuracy of the single-stepping scenario while
nearly delivering the RTF performance of the static quantum at a
quantum size of 10 cycles. However, if some timing inaccuracy can
be tolerated, the static quantum approach is able to outperform the
dynamic quantum.

6.3 Event Relevance Optimization
Asmentioned in the previous subsection, the suboptimal RTF values
found when analyzing the dynamic quantum mostly stem from the
large number of context switches due to the high event notification
load in the VP. This is corroborated by the small average quantum
size of circa 20 ns or 8 cycles, meaning that over the 200ms simu-
lation nearly 10.000.000 quanta have to be evaluated. In order to

analyze which events restrict the average quantum size, the previ-
ously introduced SystemC profiler was deployed to trace event noti-
fications during a simulation run. The generated traces show more
than 11.000.000 quantum-limiting event notifications distributed
over 3.860 events. The 15 most frequently notified events are shown
in Figure 8. Despite the large number of different events limiting
quantum size throughout the simulation, event notifications are
not evenly distributed among them. Out of the 3.860 events, 3.348
are only notified once and further 195 twice. The remaining 317
events account for 99.97% of the total event notification load, while
the 10 most frequently notified events among those reported in
Figure 8 make up 81.61% of the total.

To improve the performance of the dynamic quantum the ERO
technique presented in Section 4 is deployed. For this, the relevance
of the most frequently notified events shown in Figure 8 is analyzed
using the constructed event dependency graph. Afterwards, an ERO
event denylist is constructed which contains the irrelevant events
for the quantum calculation of CPU0. These events are highlighted
by the red pattern in Figure 8. To evaluate the performance of the
ERO approach, the average RTF is used. Figure 9 shows the average
RTF for different quantum sizes comparing the ERO approach to
the unmodified dynamic quantum. Overall, a performance gain of
about 14.32% is achieved. As seen in Figure 6, dynamic quantum
with ERO performs similar to static quantum with quantum sizes
between 20 and 50 cycles. Furthermore, ERO virtually retains the
same degree of accuracy as the unmodified dynamic quantum ap-
proach with all but one of the ISRs being triggered at the exact
same instant in simulation. Being able to achieve a significant per-
formance improvement while retaining close to perfect accuracy
shows the potential of our approach. Further analysis of the tracing
data shows that by deploying ERO the number of context switches
can be reduced by nearly 29%. The number of quantum-limiting
event notifications is reduced by about 35.58%.

7 CONCLUSION
In this work a thorough analysis of the two major temporal decou-
pling schemes for VPs has been conducted, namely the static and
the dynamic quantum. Both approaches have their merits depend-
ing on the use case. If simulation performance is paramount and
accuracy negligible to a certain degree, the static quantum with
an aptly chosen quantum size is acceptable. Yet, the definition of
this quantum size is largely left open to the developer and usually
requires a cumbersome fine-tuning process in order to find the opti-
mal trade-off. In addition, the optimal quantum size may vary over
the simulation duration, which the static quantum cannot address.

The dynamic quantum is an alternative to the static quantum,
yielding perfect simulation accuracy by setting the quantum bound-
ary at the time of the next event notification. This way no event
can be missed or handled too late. In complex multi-core VPs the
dynamic quantummay run into limitations, if one component gener-
ates event notifications at a very high rate. This limits the quantum
size of all components, because all timed event notifications are
taken into account for the dynamic quantum computation, thus
leading to diminished simulation performance. To improve the
performance of the dynamic quantum approach, we propose the

6



PR
EP

RI
N
T
-p

ub
lis
he
d
in

A
SP

DA
C
20
21
,d
oi
:1
0.1

14
5/
33
94
88
5.3

43
14
19

novel ERO method to omit irrelevant events in the quantum size
computation for each simulation thread.

Both approaches were thoroughly analyzed using a state-of-
the-art, industrial VP and realistic software workload. For the
static quantum it was shown that simulation accuracy deterio-
rates quickly for larger quanta. The unmodified dynamic quantum
performs comparably to the static quantum with a quantum of 10
cycles. This is explained by the average dynamic quantum size of
8 cycles, which is due to the high event notification load in the
VP. To optimize the VP’s performance-accuracy trade-off, ERO
was deployed. This way, the performance of the dynamic quantum
was increased by 14.32% on average, which is comparable to us-
ing a static quantum size between 20 and 50 cycles. Furthermore,
our dynamic quantum with ERO retains near-perfect simulation
accuracy.

In future work, a method for automatically finding irrelevant
events should be devised. Initial investigations have shown that this
is a nontrivial task, due to the complexity of relationships between
events. One way to deal with this complexity could be a heuristic
that applies ERO on events deemed suitable and executes the simu-
lation to gauge the impact on simulation correctness. Alternatively,

a probabilistic or statistical method might be deployed to estimate
event relevance. Using these techniques would further simplify
applying ERO in practice.

REFERENCES
[1] 2011. ISO 26262: Road Vehicles : Functional Safety. ISO.
[2] 2012. Standard SystemC Language Reference Manual. IEEE Std 1666-2011 (2012).
[3] 2020. RH850E2x product specification. https://www.renesas.com/eu/en/products/

microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html.
[4] Combes et al. 2008. Relaxing synchronization in a parallel SystemC kernel. In

2008 ISPA. IEEE.
[5] Gläser et al. 2015. Temporal decoupling with error-bounded predictive quantum

control. In 2015 Forum on Specification and Design Languages (FDL).
[6] Gowda et al. 2017. Exploring the potential of a Multi channel sequencer (MCS)

in a next generation GTM-IP using virtual prototypes. In 2017 RTEICT.
[7] Jung et al. 2019. Speculative Temporal Decoupling Using fork(). In 2019 DATE.
[8] Rachuj et al. 2019. A Generic Functional Simulation of Heterogeneous Systems.

In International Conference on Architecture of Computing Systems. Springer.
[9] Schumacher et al. 2010. parSC: Synchronous parallel Systemc simulation on

multi-core host architectures. In 2010 CODES+ ISSS. IEEE/ACM/IFIP.
[10] Schmidt et al. 2017. Exploiting thread and data level parallelism for ultimate

parallel SystemC simulation. In 2017 DAC.
[11] Weinstock et al. 2014. Time-decoupled parallel SystemC simulation. In 2014

DATE. IEEE.
[12] Weinstock et al. 2016. SystemC-link: Parallel SystemC simulation using time-

decoupled segments. In 2016 DATE. IEEE.

7

https://www.renesas.com/eu/en/products/microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html
https://www.renesas.com/eu/en/products/microcontrollers-microprocessors/rh850/rh850e2x/rh850e2m.html

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Event Relevance Optimization
	5 Case Study
	6 Evaluation
	6.1 Performance Evaluation
	6.2 Accuracy Evaluation
	6.3 Event Relevance Optimization

	7 Conclusion
	References

