
PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

EmuNoC: Hybrid Emulation for Fast and Flexible
Network-on-Chip Prototyping on FPGAs

Yee Yang Tan∗, Felix Staudigl∗, Lukas Jünger∗, Anna Drewes†, Rainer Leupers∗, and Jan Moritz Joseph∗
∗Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

{tan, staudigl, juenger, leupers, joseph}@ice.rwth-aachen.de
†Institute for Information and Communication Technologies, Otto-von-Guericke Universität Magdeburg, Germany

anna.drewes@ovgu.de

Abstract—Networks-on-Chips (NoCs) recently became widely
used, from multi-core CPUs to edge-AI accelerators. Emulation
on FPGAs promises to accelerate their RTL modeling compared to
slow simulations. However, realistic test stimuli are challenging to
generate in hardware for diverse applications. In other words,
both a fast and flexible design framework is required. The
most promising solution is hybrid emulation, in which parts
of the design are simulated in software, and the other parts
are emulated in hardware. This paper proposes a novel hybrid
emulation framework called EmuNoC. We introduce a clock-
synchronization method and software-only packet generation that
improves the emulation speed by 36.3× to 79.3× over state-
of-the-art frameworks while retaining the flexibility of a pure-
software interface for stimuli simulation. We also increased the
area efficiency to model up to an NoC with 169 routers on a single
FPGA, while previous frameworks only achieved 64 routers.

Index Terms—Hybrid emulation, NoCs, FPGA

I. INTRODUCTION

Today, massively-parallel multi-processors can be found in
different forms in nearly any system. Their application ranges
from conventional multi-core CPUs, e.g., in cloud servers, to
massively scaled systems used as low-power neuromorphic
edge AI accelerators. In any case, Networks-on-Chip (NoCs)
have become the de facto communication infrastructure for
their excellent scaling capability. Examples showing the nearly
universal use of NoCs are data-flow or parallel processors,
e.g., manycores [1], big data [2], server-scale AI [3], edge
AI [4], data bases [5], in-memory computing [6], genome
sequencing [7], medical applications [8].

Due to the wide use of NoCs, many design tools have been
created, e.g., [9], [10]. They are used for design space explo-
ration (DSE) with software simulations or hardware prototypes
that evaluate key performance metrics (KPIs) and guide the
architect. Traditionally, NoC simulators target multi-core CPUs.
With the emergence of edge AI accelerators, there is a need for
more versatile tools for changing applications or mappings, as
contributed by this work.

A typical DSE flow comprises the following: Architectural
simulators are fast and flexible, providing early critical insights.
After implementing a register transfer level (RTL) model, these
can be simulated. This is slow and practically only helpful in

Funded by the Federal Ministry of Education and Research (BMBF) and
the Ministry of Culture and Science of the German State of North Rhine-
Westphalia (MKW) under the Excellence Strategy of the Federal Government
and the Länder (G:(DE-82)EXS-SF-Project No. StUpPD 390-21)

N
ov

el
 a

pp
lic

at
io

n
e.

g.
,n

eu
ro

m
or

ph
ic

 e
dg

e A
I

NoC

Core

RTL

RTL

FPGA

KPIs
• Latency
• Throughput
• …

NoC

Core

RTL

FPGA

KPIs
• Latency
• Throughput
• …Flexible

C++
Model

Conventional Flow

EmuNoC

CPU

Fig. 1: EmuNoC: Toolflow

verifying or evaluating small parts of any design. Therefore,
emulation on FPGAs is highly relevant as of massive speed
improvements [11], [12] for any architecture optimization [13].

One key downside of FPGA emulation is its limited flexibil-
ity to adapt to novel use cases [12]. In other words, for every
new NoC use case, the RTL design of all cores, etc., would
be required. The availability of these models is unrealistic in
an early design stage, hindering the deployment of NoCs for
emerging use cases.

This paper provides an effective solution. We contribute an
open-source framework1 for NoC hybrid emulation, in which
the traffic pattern can easily be switched by software models,
but the NoC is emulated on the FPGA for high performance and
accuracy (Fig. 1). We propose a novel clock-synchronization
method and hardware-only packet generation that improves the
emulation speed by more than one magnitude. Specifically, this
paper yields the following novelties:

• We propose a hardware clock halting technique for faster
hybrid emulation, which shows a speedup of 79.3× for
synthetic traffic and 36.3× for Netrace [14] over the
previous state-of-the-art emulation framework.

1https://github.com/ICE-RWTH/EmuNoC

ar
X

iv
:2

20
6.

11
61

3v
1 

 [
cs

.A
R

] 
 2

3 
Ju

n 
20

22



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

TABLE I: NoC-on-FPGA emulators.

Emulator Model TDM/DM Transactor Synthetic Real benchmark
benchmark Netrace [14] Edge-AI

Kouadri [16], [17] Pure HW - - 3 7 7
Wolkotte [18] Hybrid TDM Bus 3 7 7
Papamichael [19] Hybrid TDM Bus 3 7 7
HAsim [20] Hybrid TDM Bus 3 7 7
FNoC [21], [22] Pure HW TDM - 3 7 7
D’Hoore [23] Pure HW TDM - 3 7 7
Chu [12] Pure HW TDM - 7 3 7
AcENoCs [24] Hybrid DM Bus 3 7 7
Drewes et al. [11] Hybrid DM Bus+Stream 3 3 7
EmuNoC Hybrid DM Stream 3 3 3

• We contribute a novel concept of a single clock syn-
chronous serializer used as a Network Interface (NI) for
NoCs with virtual channels (VCs).

• We evaluate our system for different case studies (multi-
core CPUs, edge AI accelerators) to show flexibility.

The paper is organized as follows. In Sec. II we will intro-
duce the background for hybrid emulation of NoCs and discuss
the related works. In Sec. III, we will explain our architecture.
In Sec. IV we will analyze the system performance. Finally,
the paper is concluded.

II. BACKGROUND AND RELATED WORKS

When building efficient NoCs, they must be evaluated against
benchmarks. For this, stimuli are to be generated. Synthetic
traffic enables system validation, e.g., through fuzzy testing
using random traffic, but it is not helpful for architectural
exploration as it does not reflect real workloads. Full-system
simulators (FSS), such as gem5, execute the whole system,
including the operating system, cores, caches, and the NoC. The
method offers the highest-precision benchmarks but often is
unacceptably slow. Traces, recorded with an FSS and replayed
later, provide a useful middle-ground.

For modeling the NoC, the accuracy of traces is often
sufficient, as demonstrated by Netrace [14] for multi-core
CPUs. Netrace provides trace files and a dependency-driven
C-based player. The traces are generated by running PARSEC
benchmarks on gem5 for a 64-core system. The dependency
tracking between packets boosts the accuracy. For AI systems,
trace generation is often more straightforward than for CPUs,
because of the deterministic execution of DNNs (e.g., no
situational caching). Most mapping strategies of DNNs enable
mathematical trace modeling. One example is NewroMap [15],
which showed that the feed-forward characteristic of DNNs can
be exploited for mapping neurons to neuromorphic, memory-
bound accelerators. The resulting traffic patterns in the NoC
yield high locality and a low number of dependencies.

Cycle-accurate simulators, RTL simulation, or FPGA hybrid
emulation offer different options to understand the performance
of NoCs before their deployment to a system, hence enabling
design space exploration.

Cycle-accurate simulators offer a decent compromise be-
tween accuracy and speed. Booksim [25], Noxim [10], and
Ratatoskr [26] are the most popular. Booksim [25] uses a
channel model that implements a two-phase evaluate-update
protocol for routers. Noxim [10] is implemented using the
cycle-accurate modeling of the SystemC library. It allows

varying NoC parameters with configuration files. Ratatoskr
[26] also builds upon SystemC but uses TLM for system-
level benchmarks. A 64-node mesh network yields a simulation
frequency between 1000 Hz and 10 000 Hz (cf. Fig. 8).

For even higher speed, emulation on FPGAs became the
industry standard. A whole NoC might be too large for a single
FPGA, so Kouadri et al. [16], [17] emulate it through partition-
ing the NoC and mapping it onto multiple FPGAs. However,
the measurement accuracy is limited by the off-chip data
transmission architecture. When using only a single FPGA, one
can directly map the NoC (if the FPGA is large enough) or use
time-division multiplexing (TDM). TDM [18]–[20] implements
a single router in the FPGA’s programmable logic. The status
of the routers are stored in the off-chip memory. This method
can emulate a large-scale NoC with over 1000 nodes, but it
requires huge off-chip memory and deteriorates performance.
Chu et al. [21], [22] partition the NoC into multiple virtual
clusters, each cluster containing multiple routers. Each cluster
is emulated sequentially, increasing emulation speed. 3D NoCs
can also be implemented using TDM [23].

TDM is rarely used in industry, since FPGAs can easily be
clustered to provide sufficient resources to accommodate the
whole NoC. In other words, directly-mapped (DM) approaches
became viable. This method can achieve the highest perfor-
mance because all routers run in parallel. Different framework
designs will degrade the emulated NoC frequency. AcENoC
[24] ran a 5×5 NoC using a separate bus system to transmit
the data to/from the NoC and achieved a maximum frequency
of 23kHz. For larger 8×8 NoCs, Drewes et al. [11] used an
AXI4-Stream bus to collect the data from the NoC with the
technique of an asynchronous serializer, and achieved 16kHz.

To further boost performance, Netrace’s dependency tracking
between packets was implemented in hardware by [12] achiev-
ing up to 12MHz emulation speed. However, this limits the
system’s flexibility, as the benchmark cannot be replaced easily.

A complete comparison of all NoC emulation systems is
given in Tab. I. Only EmuNoC provides the flexibility for
changing applications at high frequency.

III. EMULATION SYSTEM ARCHITECTURE

The previous state-of-the-art emulation frameworks using
directly-mapped NoCs are limited in performance from a) the
bus system data transaction [11], [24], and b) the software
clock halting technique for cycle-accurate emulation [11]. This
paper presents an improved approach tackling both downsides
to achieve an even faster emulation speed.

The architecture of EmuNoC is shown in Fig. 2. It consists of
the software (virtual platform/green), executed in the CPU cores
of our FPGA, the hardware (RTL design/blue), executed in the
programmable logic, and a transactor (orange) that connects
both of them. We propose a novel transactor to overcome the
performance bottleneck with the AXI4-Stream data transaction
and hardware-based clock halting technique. On the software
side, a virtual platform generates and sends packets to the RTL
model at a defined time quantum (injection cycle) through the
transactor and places it in the virtual hardware buffer. A clock
halter enables to stop the execution of the RTL model at any



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

Injection/Ejection API

AXI DMA

PetaLinux Userspace I/O SG DMA API

Clock HalterSerial-to-Parallel
Injector

Parallel-to-Serial
Ejector

Injection PEs Ejection PEs

Injection NIs Ejection NIs

NoC

Packet data conversion

Packet Generation

Virtual Hardware Buffer

Packet
Dependency

CheckerPacket Queue
List

Injection
Cycle

TX RX

Processing System
Processing Logic

V
irtual Platform

Transactor
R

T
L

 D
esign

AXI4-Stream

Logging

AXI4-Stream

Fig. 2: EmuNoC system architecture.

given time. This unit is used in two scenarios: For packet
injection, the transactor sets the time quantum step to the clock
halter through the serial-to-parallel injector and enables RTL
execution until the next given injection cycle. When the NoC
RTL model is executed (i.e.,not halted), the serial-to-parallel
injector injects packets into the source PEs. The parallel-to-
serial ejector halts the RTL model via the clock halter when
the packets arrive at a destination processing element (PE) for
packet ejection. Then, it sends the halted time step (recorded
by the clock halter) and the arrived packets via DMA to the
software-side buffer through the transactor. The virtual platform
checks, removes, and logs received packets.

A. Hardware Architecture

Fig. 3 shows the hardware architecture of our novel transac-
tor with its adjacent units.

1) Clock Halter: The clock halter stops the execution of
the emulated NoC at any time for synchronization with the
virtual platform. It is a central logic connected to nearly all
other components (see Fig. 3). Fig. 4 shows its block diagram.
The halting clock is generated by a buffer driven by the global
clock and enabled by a ctrl signal (=1). An injection cycle is
stored using the write enable signal. The counter counts cycles.
The ctrl signal enables the halting clock when the value is
smaller than the stored injection cycle value. The signal ctrl
halts the buffer and the counter stops counting whenever the
halt signal is 1. If the counter equals to the injection cycle, the
stop signal is set and the halting clock is disabled.

2) Serial-to-Parallel Injector: The serial-to-parallel injector
receives packets from the software side and injects them into
the NoC. For communication with the software, the injector
contains an AXI4-Stream slave port. When a transaction starts,

the first stream data determines the injection cycle until which
the RTL design is executed. Once reached, the injector converts
the packet into the header flits (the communication unit within
the NoC; conv in Fig. 3) and sends them to the respective PE’s
FIFO using the packet’s source address.

3) Parallel-to-Serial Ejector: When a destination PEs re-
ceives a complete packet (i.e.,all of its flits), the parallel-to-
serial ejector instructs the clock halter to halt the RTL design
through the halt signal (=1). This module converts the header
flit back (iconv in Fig. 3) to packet data and sends it via DMA
(AXI4-Stream) to the software side. The sent data contain the
clock cycle at which the packet was received. Fig. 5 shows
the implementation logic of the single clock serializer. The
blue part refers to the corresponding PE’s FIFO. If a complete
packet arrives at the destination, only the header flit is stored in
the FIFO, the corresponding signal read valid becomes 1. The
block or reduce (purple) tells the FSM (yellow) to initiate the
stream transaction. The FSM updates the round robin arbiter
(green) with the signal ctrl (=1) to decide which FIFO to read.
When data is read from the AXI4-stream port (tready=1), the
corresponding FIFO is read through the multiplexer’s output
signal (red). If all header flits in the FIFOs are ejected (halt=0),
the round-robin arbiter (selecting the ejection FIFO order) will
be updated, and the RTL emulation will continue.

4) Injection PE: The injection PE subsequently injects flits
of each packet into the NoC. For each PE, there is a network
interface (NI) that handles the assignment of flits to VCs and
sends them into the connected router (see below).

The injection PE contains a FIFO and an FSM, managing
the AXI4-Stream transactions and packet injection via a NI.
When the PE’s FIFO holds the first flits of a packet (header
flit), it starts the transaction by injecting it. The packet contains
dummy payload flits as our implementation does not transmit
”useful” payloads and handles the packet assignment at the
destination via the software’s virtual buffers.

5) Injection NI: The NI accepts a complete packet in one
AXI4-Stream transaction. If the NoC uses multiple VCs, pack-
ets will be assigned via round-robin arbitration. The flits travel
through the NoC until they are received in the target PE’s NI.
In the implementation at hand, we use the Ratatoskr router
[13]; it can be exchanged by any other NoC that implements
an AXI4-compatible interface.

6) Ejection NI: The ejection NI contains one FIFO per VC;
the FIFO is long enough to store a whole packet, i.e.,all of its
flits. When all packet flits are received, the NI starts the AXI4-
Stream transaction and sends the packet to its PE. The number
of flits is checked via a comparator in Fig. 5.

7) Ejection PE: This PE functions like the injection PE. It
receives flits from its NI. Only the head flit is stored to be
transmitted to the software side. This flit is put into a 1-flit
FIFO connected to the serializer when a packet is completed.

B. Software Architecture

Drewes et al. [11] used the simple DMA mode to transfer
data to the NoC. EmuNoC uses Scatter Gather (SG) DMA
mode to improve performance. On the software side, the SG



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

halting clock

...

Injection Cycle, write enable, stop Ejection Cycle, halt

Ej
ec

tio
n 

N
I

Ta
rg

et
 N

oC

In
je

ct
io

n 
N

I

Parallel-to-Serial Ejector

iconv

Se
ria

l-t
o-

Pa
ra

lle
l I

nj
ec

to
r

conv

Clock Halter

m_axis_pss_axis_sp

global clock

...

Injection cycle
packet 0
packet 1

...

Ejection Cycle
packet 0
packet 1

...

FSM

Inject PE

FSM

Eject PE

32 32

AX
I4
-S
tre

am

AX
I4
-S
tre

am

Fig. 3: EmuNoC hardware architecture.

Controller 
 
 

global clock halting clock

Injection Cycle

Ejection Cycle
halt

stop
write enable

counter

ctrl

32

32

Fig. 4: Block diagram of the clock halter.

co
m

pa
ra

to
r

packet length,
FIFO count, 
read valid

N

valids

"00...0"

FSM

FIFO 1FIFO 0

...
N

m_axis

1 

0read
enables

tready

ctrl

round
robin

arbiter

N

or
reduce

halt

Fig. 5: Serializer as used in the ejector; gray-shaded part for
multi-VC NoCs.

DMA API for PetaLinux Userspace I/O [27] is implemented
(Fig. 2). We also used compiler optimizations, e.g.,-Ofast.

Fig. 6 shows the software design of the framework. It is the
detailed view of the virtual platform in Fig. 2. The variables
icyc is the injection cycle, src the packet’s source address, dst
the destination address, and len the packet length/flit count.

In general, our software is executed in the following six steps
(highlighted in Fig. 6):

(1) Packet data is generated using the flexible software inter-
face (example see below).

(2) The program searches for the earliest available packets and
puts them into the queue.

(3) The virtual hardware buffer sends the packet data to the
Injection PE’s FIFO. It also keeps a copy to handle the
assignment of the received flits to the correct packet, as
explained above. The injection cycle and the packets are
sent to the NoC and transmitted there to the target PE.

(4) When the packets have arrived at their destination, the
DMA stored them in the main memory. Then, the program
compares the received packet, which is matched with
its counterpart in the virtual hardware buffer to enable
dependency tracking.

(5) After injecting the previous time quantum in (3), the pro-
gram needs to determine the next time quantum to inject
the packets. Then, the program checks whether the next
time quantum has exceeded the user-defined maximum
cycle to run. If the program reaches the maximum cycle
or no more packet to inject, it goes to (6); else to (2).

(6) If the virtual buffer is empty, the emulation will stop.

We will demonstrate the flexibility of this software architec-
ture with three different traffic scenarios (see below). Any other
use case can be implemented easily by modifying the software
code. A simple example code exemplifies this (Listing 1). Line
1 refers to the yellow blocks in Fig. 6, different modes are
decided, and the metadata is generated. The rest of the program
refers to the six steps, in which a packet list is iterated and
injected to the NoC.

Listing 1: Example packet generation.
1 metadata = initialization(mode);
2 pkt_cyc_list = generate_packets(metadata);
3 do
4 {
5 if (cyc < max_cyc)
6 put_packet_to_queue(cyc, pkt_cyc_list, queue_lists);
7 hw_list = copy_to_hw_buffers_and_create_hw_list(hw_buffers, queue_lists);
8
9 inject(cyc, hw_list);

10 eject(hw_buffers);
11
12 cyc = calculate_next_injection_cycle(pkt_cyc_list);
13 } while (cyc < max_cyc);
14 check_lost_packets(hw_buffers);



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

copy

icyc, ecyc, packet
Check availabilityPacket Completion

Logging

Filesystem

metadata

Packet Generation 
(icyc, src, dst, len)

Virtual Hardware Buffer

(1)

(2)

(3)

(4)

(5)

remove

ecyc, packets

icyc, packetsInjection API

Ejection API

Hardware SystemPacket Queue
Injection CycleSynthetic Traffic

Neuromorphic Mapping
Dependency Tracking

Fig. 6: EmuNoC software architecture.

TABLE II: Hardware resources of different NoC configurations
of each emulator. (FB: flit buffer)

Emulator NoC VC FB LUT LUTRAM FF BRAM BUFG Slices

EmuNoC 5×5 2 8 40750 6150 45944 39.5 3 -
EmuNoC 8×8 2 3 100148 14934 105960 98 3 -
EmuNoC 13×13 2 4 267230 39174 274644 255.5 3 -
EmuNoC 13×13 - - 34261 1110 38666 86.5 3 -

AcENoC [24] 5×5 2 8 52520 840 19569 - - -
Drewes [11] 8×8 2 3 97515 - 78361 36.5 - -

Chu [12] 8×8 - - 133327 - 111576 830 - 43903

IV. RESULTS

A. Hardware Costs

Table II shows the used FPGA resources of EmuNoC,
AcENoC [24], Drewes et al. [11] and Chu [12]. EmuNoC’s
resources were obtained from Vivado 2018.2 for a Zynq Ul-
traScale+ MPSoC ZCU102. The global clock (Fig. 3) is set to
80MHz and the FIFOs in the NoC and the transactor use the
Xilinx’s FIFO IP [28] to support larger setups.

As we can see, the FPGA resources of EmuNoC increase
approximately linearly with the router count. EmuNoC used
more memory (LUTRAM, BRAM) than AcENoC [24] and
Drewes et al. [11], which is required for our better emulation
performance. Still, we can host up to 169 routers, more than
triple the router count than in the previous DM framework (even
with larger single routers). We achieved this by enabling them
to use larger standard FPGAs; [11] relied on a custom clock
halter that only was possible in their FPGA. Chu [12] consumes
more resources than EmuNoC (8×8) because they implement
the dependency tracking in hardware.

B. Emulation Performance

EmuNoC is validated with uniform random traffic (uniform
random source-destination pairs and injection times). This
traffic allows to fuzzzy-test the NoC as random traffic is sent
though the network.

To compare EmuNoC’s performance with the state-of-the-art
emulation, the NoC is set to the same configuration as AcENoC
[24] (5×5 mesh with 2 VCs and 8-flit buffer) and Drewes et al.
[11] (8×8 mesh with 2 VCs and 3-flit buffer). The largest NoC
that can be emulated on our FPGA is 13×13 mesh NoC with
2 VCs and 4-flit buffer. The emulation performance of these
configurations are shown in Fig. 7. We observe a performance
degradation with NoC size and injection rate.

Table III shows the emulation frequency at 5% flit injection
rate for synthetic traffic. EmuNoC achieves 2221 kHz for 5×5
mesh, 1319 kHz for 8×8 mesh. EmuNoC yields a 96.6×
speedup over AcENoC [24], and a 79.3× speedup over Drewes

2 4 6 8 10

Flit injection rate per node (%/cycle)

0.5

1.0

1.5

2.0

2.5

3.0

E
m

ul
at

io
n 

fr
eq

ue
nc

y 
(M

H
z) 5x5 NoC

8x8 NoC
13x13 NoC

Fig. 7: Emulation performance with uniform random traffic.

et al. [11]. We have achieved faster emulation speed than any
other flexible, directly-mapped framework.

C. Performance Scaling

As stated, the emulation performance drops with NoC size
and traffic load. We compare our system against simulators to
analyze this scaling effect as they show the same behavior from
the similar root of traffic injection.

We simulate a 13×13 mesh NoC (2 VCs and 4-flit buffer)
with the simulators Booksim 2.0 [25], Noxim [10], and
Ratatoskr [26] using dimension-ordered routing, 5-flit packets.
We measure the median of 10 simulations on a WSL Ubuntu
20.04.2 LTS using one Intel i7-5700HQ core at 2.7 GHz and
show the results in Fig. 8. By increasing the flit injection rate,
we can see the simulation performance decreases (Fig. 8(a)).
Fig. 8(b) shows three different NoC sizes at fixed 5-% injection
rate. A larger injection rate or NoC size degrades the simulation
performance because the simulation needs to generate traffic
and simulate the routers sequentially.

Analyzing the performance drop of these simulators and
EmuNoC, we found out that Booksim 2.0 [25] has the highest
performance loss from 1 to 10% injection rate for 13×13 NoC
(78.9%; EmuNoC is 78.8%; Noxim [10] is 77.1%; Ratatoskr
[26] is 73.3%). Emulation behaves similarly to the simulations
because of the software-side traffic generation.

If the NoC size is increases from 5×5 to 13×13 (fix 5%
flit injection rate per cycle), Ratatoskr [26] has lost the most
performance (95.4%) compared to Booksim 2.0 [25] (92.6%),
Noxim [10] (90.8%) and EmuNoC (70.2%). Here we observe
an advantage of emulation, as EmuNoC yields the lowest
performance drop.

D. Case Study I: Multi-core Processors

Netrace [14] provides 64-core processor’s traces with de-
pendency tracking. It contains five phases from the PARSEC
benchmarks: the startup, warmup, region of interest (ROI),
result output, and post benchmark. Drewes et al. [11] has run



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

2 4 6 8 10

Flit injection rate (%/cycle)

2

4

6

8

10

Si
m

ul
at

ed
 fr

eq
ue

nc
y 

(k
H

z) Booksim 2.0
Noxim
Ratatoskr

(a) Simulation performance for different flit injection rates in a 13×13 NoC.

5 6 7 8 9 10 11 12 13

NoC size in n×n

0

10

20

30

40

50

60

70

Si
m

ul
at

ed
 fr

eq
ue

nc
y 

(k
H

z) Booksim 2.0
Noxim
Ratatoskr

(b) Simulation performance for different NoC sizes at 0.5% flit injection rate.

Fig. 8: Simulation performance with NoCs.

TABLE III: Performance comparison of frameworks.

Emulator NoC Traffic Frequency Speedup
[kHz]

AcENoC [24] 5×5 Synthetic 23 96.6
Drewes et al. [11] 8×8 Synthetic 16.639 79.3
Drewes et al. [11] 8×8 Netrace 39.243 36.3

Chu [12] 8×8 Netrace 12979 0.11
EmuNoC 5×5 Synthetic 2221.464 -
EmuNoC 8×8 Synthetic 1319.333 -
EmuNoC 8×8 Netrace 1426.404 -
EmuNoC 13×13 Synthetic 661.291 -

the whole benchmark (Fig. 9 right-side yellow box). Their re-
sults show a performance drop in the ROI (yellow highlighted)
because this region contains the highest traffic workload. As
the ROI is hence the exciting part, only it is investigated in our
experiment. The result is shown in Fig. 9, left-hand side. Sim-
ilar to [11], we first observe a performance drop then followed
by a performance recovery. In average, we achieve 1426 kHz
(see Table III), which has achieved 36.3× speedup compared
to Drewes et al. [11]. Our framework is slower than Chu [12]
by 0.11×. The reason is that Chu [12] implemented Netrace-
specific dependency-tracking hardware. While this method has
a high performance, it is not flexible for application-centered
engineers to adopt different use cases easily. Therefore, our
software-based dependency tracking offers a compelling trade-
off between performance and flexibility for many practitioners.

E. Case Study II: Neuromorphic Edge-AI Accelerator

Studying edge AI-accelerator architectures [29]–[32] shows
that all of them demand a scalable NoC. This yields a workload
mapping problem, e.g.,solved by NewroMap [15] for CNNs, in
which the network activations are transmitted via the NoC.

One well-known property of neural networks is their high
sparsity, i.e., 0-values, which need not be sent via the NoC
[33]. Hence, the effective injection rate in the NoC for each

Fig. 9: Emulation performance for PARSEC [14] ROI for
different traces. (8×8 NoC with 2 VCs, 3-flit buffer). The right-
hand-side image is cited from [11].

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

sparsity

50

60

70

80

90

m
ax

 la
te

nc
y 

(c
yc

le
)

NewroMap
Snake Mapping

ResNet MobileNet

(a) 1 VC, 2-flit buffer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

sparsity

50

60

70

80

90

m
ax

 la
te

nc
y 

(c
yc

le
)

NewroMap
Snake Mapping

ResNet MobileNet

(b) 2 VCs, 1-flit buffer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

sparsity

50

60

70

80

90

m
ax

 la
te

nc
y 

(c
yc

le
)

NewroMap
Snake Mapping

ResNet MobileNet

(c) 2 VCs, 2-flit buffer

Fig. 10: Maximum latency measurement for different CNN
mappings [15] for sparsity rates.



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

mapping is scaled by a) a sparsity factor and b) the target
framerate in our exemplary case of video applications. This
gives the formula for the injection per PE rate as

irate =
mapneurons ∗ (1− sparsity) ∗ framerate

frequencyNoC
,

where mapneurons is the number of neurons mapped to a
core. We use the framerate and frequencyNoC from one
commercially available accelerator called NeuronFlow [4] as
30 FPS and 1 GHz.

We analyzed different mappings and NoC architectures to
demonstrate the flexibility of EmuNoC. We plot the maximum
packet latency in Fig. 10. We used very lightweight NoCs
with/without VCs and multi-flit buffers. As edge AI workloads
tend to have particular traffic patterns with high locality, these
architectures are promising to investigate (even though they
would be not useful for conventional multi-core CPUs).

We observe that the maximum packet latency decreases
with higher sparsity for all architectures. This effect is as
expected as less traffic yields less congestion. We further
observe that the optimized mappings proposed by NewroMap
can improve latency vs. snake mapping, which was previously
only demonstrated in simulations in [15].

Another interesting finding is that a NoC without VCs and 2-
flit buffers has a lower maximum latency than the architectures
with 2 VCs and 1-flit buffers (see Fig. 10(a) vs. Fig. 10(b)).
Both architectures yield approximately the same area costs.
At first glance, this is surprising since VCs promise better
peak performance. However, the high locality of edge-AI traffic
patterns effectively removes the need for VCs in many routers.
Also, adding additional buffers (Fig. 10(c)) does not improve
performance. These findings advocate for very lightweight
NoCs in edge-AI systems. However, the authors would like to
mention that a VC-less router will not be the best architecture to
choose in all cases. While it has the lowest area costs and best
performance, it effectively prohibits multi-thread processing of
CNN layers on single cores. Hence, the higher NoC costs might
be worth it from a system design perspective.

V. CONCLUSION

This paper proposed a fast and flexible FPGA-based NoC
hybrid emulation called EmuNoC. These features are achieved
by a novel transactor architecture and a programmable software
interface. The transactor contains a novel clock-synchronization
method and hardware-only packet generation unit. The pro-
grammable software interface enables mapping different system
benchmarks to the NoC, which is highly relevant as NoCs are
widely used today. EmuNoC has achieved 36× to 96× speedup
compared to the comparable previous DM method. We also
increased the area efficiency and were able to emulate an NoC
with 169 routers on a single FPGA with a state-of-the-art size
at time of writing this paper. We used the emulator in two case
studies to demonstrate its practical use for architects.

REFERENCES

[1] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-chip
networks for manycore accelerators,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2010, pp. 421–
432.

[2] C. Blochwitz, J. M. Joseph, R. Backasch, T. Pionteck, S. Werner,
D. Heinrich, and S. Groppe, “An optimized radix-tree for hardware-
accelerated dictionary generation for semantic web databases,” in 2015
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2015, pp. 1–7.

[3] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” Ieee Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[4] O. Moreira, A. Yousefzadeh, F. Chersi, A. Kapoor, R.-J. Zwartenkot,
P. Qiao, G. Cinserin, M. Khoei, M. Lindwer, and J. Tapson, “Neuron-
flow: A hybrid neuromorphic – dataflow processor architecture for ai
workloads,” in 2020 2nd IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), 2020, pp. 01–05.

[5] C. Blochwitz, J. Wolff, J. M. Joseph, S. Werner, D. Heinrich, S. Groppe,
and T. Pionteck, “Hardware-Accelerated radix-tree based string sorting
for big data applications,” in International Conference on Architecture of
Computing Systems. Springer, 2017, pp. 47–58.

[6] R. Guirado, A. Rahimi, G. Karunaratne, E. Alarcón, A. Sebastian, and
S. Abadal, “Wireless On-Chip Communications for Scalable In-memory
Hyperdimensional Computing,” arXiv preprint arXiv:2205.10889, 2022.

[7] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A. Kalyanaraman, “Network-
on-chip hardware accelerators for biological sequence alignment,” IEEE
Transactions on Computers, vol. 59, no. 1, pp. 29–41, 2009.

[8] D. Passaretti, J. M. Joseph, and T. Pionteck, “Survey on FPGAs in
medical radiology applications: Challenges, architectures and program-
ming models,” in 2019 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 2019, pp. 279–282.

[9] J. M. Joseph, L. Bamberg, I. Hajjar, B. R. Perjikolaei, A. Garcı́a-Ortiz,
and T. Pionteck, “Ratatoskr: An open-source framework for in-depth
power, performance, and area analysis and optimization in 3d nocs,”
ACM Trans. Model. Comput. Simul., vol. 32, no. 1, sep 2021. [Online].
Available: https://doi.org/10.1145/3472754

[10] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,” in
2015 IEEE 26th international conference on application-specific systems,
architectures and processors (ASAP). IEEE, 2015, pp. 162–163.

[11] T. Drewes, J. M. Joseph, and T. Pionteck, “An FPGA-based prototyping
framework for Networks-on-Chip,” in 2017 International Conference on
ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2017, pp.
1–7.

[12] T. V. Chu, K. Kise, and K. Tanaka, “Dependency-Driven Trace-
Based Network-on-Chip Emulation on FPGAs,” in Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 211–221. [Online]. Available:
https://doi.org/10.1145/3373087.3375309

[13] J. M. Joseph, L. Bamberg, D. Ermel, B. R. Perjikolaei, A. Drewes,
A. Garcı́a-Ortiz, and T. Pionteck, “Nocs in heterogeneous 3d socs: Co-
design of routing strategies and microarchitectures,” IEEE Access, vol. 7,
pp. 135 145–135 163, 2019.

[14] J. Hestness, B. Grot, and S. W. Keckler, “Netrace: dependency-driven
trace-based network-on-chip simulation,” in NoCArc ’10, 2010.

[15] J. M. Joseph, M. S. Baloglu, Y. Pan, R. Leupers, and L. Bamberg,
“NEWROMAP: Mapping CNNs to NoC-Interconnected Self-Contained
Data-Flow Accelerators for Edge-AI,” in Proceedings of the 15th
IEEE/ACM International Symposium on Networks-on-Chip, ser. NOCS
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 15–20. [Online]. Available: https://doi.org/10.1145/3479876.3481591

[16] A.-M. Kouadri-Mostéfaoui, B. Senouci, and F. Pétrot, “Scalable multi-
fpga platform for networks-on-chip emulation,” in 2007 IEEE Interna-
tional Conf. on Application-specific Systems, Architectures and Proces-
sors (ASAP). IEEE, 2007, pp. 54–60.

[17] A. Kouadri-Mostefaoui, F. Rousseau, and F. Petrot, “Large scale on-chip
networks: An accurate multi-fpga emulation platform,” in 11th EUROMI-
CRO Conference on Digital System Design Architectures Methods and
Tools (DSD’08). IEEE Computer Society, 2008, pp. 3–9.

[18] P. T. Wolkotte, P. K. Holzenspies, and G. J. Smit, “Fast, accurate and
detailed noc simulations,” in First International Symposium on Networks-
on-Chip (NOCS’07). IEEE, 2007, pp. 323–332.

[19] M. K. Papamichael, “Fast scalable fpga-based network-on-chip simula-
tion models,” in Ninth ACM/IEEE International Conference on Formal
Methods and Models for Codesign (MEMPCODE2011). IEEE, 2011,
pp. 77–82.



PREPRINT - Accepted in Proceedings of the 32nd International Conference on Field Programmable Logic (FPL ’22)

[20] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer, “Hasim: Fpga-
based high-detail multicore simulation using time-division multiplexing,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture. IEEE, 2011, pp. 406–417.

[21] T. V. Chu, S. Sato, and K. Kise, “Fast and cycle-accurate emulation of
large-scale networks-on-chip using a single fpga,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 10, no. 4, pp. 1–
27, 2017.

[22] T. Van Chu, S. Sato, and K. Kise, “Ultra-fast noc emulation on a single
fpga,” in 2015 25th International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2015, pp. 1–8.

[23] J. D’Hoore, P. Bahrebar, and D. Stroobandt, “3D NoC emulation model
on a single FPGA,” in Proceedings of the Workshop on System-Level
Interconnect: Problems and Pathfinding Workshop, 2020, pp. 1–8.

[24] S. Lotlikar, V. Pai, and P. V. Gratz, “Acenocs: A configurable hw/sw
platform for fpga accelerated noc emulation,” in 2011 24th Internatioal
Conference on VLSI Design, 2011, pp. 147–152.

[25] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2013, pp. 86–
96.

[26] J. M. Joseph, S. Wrieden, C. Blochwitz, A. Garcı́a-Oritz, and T. Pionteck,
“A simulation environment for design space exploration for asymmetric
3d-network-on-chip,” in 2016 11th International Symposium on Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC), 2016, pp.
1–8.

[27] L. Hans-Jürgen Koch Linux developer, “The Userspace I/O HOWTO,”
2006. [Online]. Available: https://www.kernel.org/doc/html/v4.12/driver-
api/uio-howto.html

[28] Xilinx, “FIFO Generator v13.1 LogiCORE IP Product Guide,” April 5,
2017.

[29] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC:
A Convolutional Neural Network Accelerator with in-Situ Analog
Arithmetic in Crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 14–26. [Online]. Available: https://doi.org/10.1109/ISCA.2016.12

[30] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, and D. S.
Milojicic, “PUMA: A Programmable Ultra-Efficient Memristor-Based
Accelerator for Machine Learning Inference,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
715–731. [Online]. Available: https://doi.org/10.1145/3297858.3304049

[31] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 27–39, 2016.

[32] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang,
M. Barnell, Q. Wu et al., “RENO: A high-efficient reconfigurable
neuromorphic computing accelerator design,” in Proceedings of the 52nd
Annual Design Automation Conference, 2015, pp. 1–6.

[33] X. Liu, W. Wen, X. Qian, H. Li, and Y. Chen, “Neu-noc: A high-efficient
interconnection network for accelerated neuromorphic systems,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
2018, pp. 141–146.


